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Abstract

In this study, a single frontal channel from an 8-channel wireless dry electrode EEG
system was used to design a system that can reliably detect single and double eye blinks.
This system was then evaluated based on its reaction time and detection accuracy with
different feedback conditions. It was shown that within one session, participants could
wirelessly control the peripherals of an ESP32 microcontroller using their blinks.

In the second part of the study a publicly available motor imagery data set acquired
with a 59 channel EEG was analyzed using event-related desynchronization/synchro-
nization (ERD/ERS) curves, common spatial patterns (CSP), and sparse filter band
common spatial patterns (SFBCSP). With these methods, classification accuracies of
above 90% could be achieved.

The last part consisted of recording and analyzing motor imagery data using the same
EEG system used for the eye blink detection system. Finally, the results were analyzed
to investigate whether the designed eye blink detection system can be used to aid motor
imagery brain-computer interfaces.
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1 Introduction

Humans can interface with computers in manifold ways. Moving a mouse to control a
cursor on a computer screen, using voice recognition systems, and touching screens to
navigate smartphones can be named as some of the most prominent examples. These
interfaces are so embedded in daily life that new designs mainly focus on making them
faster, more accurate, and robust. However, another possibility to consider is to design
new ways of interfacing.

The question may arise whether this is needed. Current interfaces seem to be working
well for healthy and capable people. Nevertheless, there is no need to be conservative to
change. When the interfaces used daily were first introduced, they were also novelties.
So, there is always room for improvement.

Furthermore, the most popular interfaces can be unusable in some specific cases,
especially for patients with neurological conditions. Some of them cannot move their
hands to touch screens or use voice recognition software for extended periods because
they may run out of breath. It is of utmost importance that interfaces get developed that
are useful for such patients to have less dependency on others and more control in their
lives.

These considerations led to systems that bypass most motor functions and commu-
nicate directly with the brain. Such a system is generally defined as a brain-computer
interface (BCI). One of the leading fields in BCI research is the use of electroencephalo-
gram (EEG). Using an EEG-based BCI, it is theoretically possible to help humans
interface with machines more efficiently.

One of many such possibilities is to use the motor imagery (MI) paradigm. It has been
the most researched EEG-based BCI paradigm for a long time [1]. This accumulated
knowledge makes MI an excellent candidate for investigating the use of such BCIs for
reliable human-computer interfacing.

The main problem of MI-BCIs is that it requires extensive training. Concretely, users
may need several training sessions to learn how to operate a MI BCI [2]. This need for
extensive training raises the question of whether other control signals can aid MI-BCIs
by increasing their degrees of freedom and allowing faster results, for example, being
able to use EEG to control external devices within one session.

For this purpose, a control signal had to be used that can be easily detected by EEG.
As discussed in more detail in the upcoming chapters, EEG is prone to undesired noise,
usually referred to as "artifacts" in the BCI terminology. Since these artifacts are so
prominent in EEG recordings, one idea is to use them as control signals. Although this
seems unintuitive at first, it was shown that non-neural artifacts cause a small impact
on MI-BCI performance. Especially ocular artifacts alone had no significant influence,
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1 Introduction

probably because they affect a lower frequency band than the one of interest for MI [3].
Previous work also showed that horizontal eye movements could be combined with
ERDs caused by MI [4]. Thus, it became interesting whether eye blinks can be reliably
detected using EEG and whether this system could support multiple control signals.

Two systems were designed to answer these questions. The first system can detect
single blinks, whereas the second can detect both single and double blinks. These
systems had to be tested for accuracy and speed to investigate whether they could
be used in real-life situations, e.g., for smart home assistance. This application would
already be particularly helpful for patients with neurological conditions.

After successfully building and testing the proposed eye blink detector systems,
whether an MI-BCI could be built with the Unicorn Hybrid Black by g.tec medical
engineering GmbH, an 8-channeled dry electrode EEG used for this study, had to be
investigated.

As a starting point, it was studied whether the methods proposed in previous studies
like event-related desynchronization/synchronization (ERD/ERS), common spatial
patterns (CSP), and sparse filter band common spatial patterns (SFBCSP) could be used
to distinguish between different MI classes. For this purpose, first, a data set provided
by the Berlin BCI group for the BCI Competition IV (data set 1) was analyzed [5]. Then
the same methods were applied to a data set that was recorded for this study using
Unicorn Hybrid Black following the paradigm to record the data set 2b from again the
BCI Competition IV. This data set was provided by the Graz University of Technology [6].
Again, all these were done to investigate whether the wireless EEG system consisting
of eight dry electrodes used for this study could extend the eye blink detection system
with MI.

This study shows that eye blinks can be reliably used as control outputs for, e.g.,
home assistance systems. Tested participants could control the system and acquire high
accuracy rates within only one session. This study also demonstrates how previously
designed methods perform for analyzing the Berlin BCI data set and a data set recorded
with Unicorn Hybrid Black following the paradigm used for the Graz data set.

The following questions give an overview of the research questions addressed by this
study:

1. Can single eye blinks be detected using a single EEG channel? How does this
system perform?

2. Can double eye blinks be detected using a single EEG channel? How does this
system perform?

3. Can the eye blink detection system be reliably used within only one session?

4. Does feedback influence the eye blink detection system?

5. Can the detected blinks be used as control signals for IoT (Internet of Things)
devices?
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6. How do offline analysis methods perform on an "ideal" data set?

7. How do offline analysis methods perform on a data set recorded with the Unicorn
Hybrid Black?

8. Can an online MI-BCI be realized with the Unicorn Hybrid Black?

9. Can the eye blink detection system be extended to support MI?
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2 Scientific Background and Related
Research

2.1 EEG

At the time of writing EEG is the most widely used method of recording brain activity
[7]. It mostly consists of an elastic cap with holes inside for circular electrodes, also
referred to as channels. These electrodes can be active or passive. Active electrodes
amplify the EEG signal at the electrode, whereas for passive electrodes, this is done
externally.

Depending on whether a conductive electrolyte gel is applied to the electrodes, the
EEG system can be wet or dry. This gel lowers the impedance value of the electrodes
and this results in a minimization of the noise in the data. High frequency 50 Hz line
noise or slow drifts coming from the skin potential can thus be minimized. So, wet
EEG systems come with the advantage of better signal quality, but it also takes time to
apply the gel to each electrode. Furthermore, the participant being recorded has to wash
their hair after the recording is over. This makes wet EEG systems a good candidate for
research but not for real-life applications, for example, in a home setting.

On the other hand, dry electrode systems can be mounted very quickly without
the need for applying gel to each electrode. The signal quality of such systems is
more questionable than wet electrode systems and highly depends on the system. Dry
electrode systems mostly do not offer impedance measurements, so the researcher is
mostly left with the output signal to make a decision whether the signal quality is good
enough for the recording.

EEG data has high temporal but poor spatial resolution [8]. This is mostly because
recorded EEG dynamics is exclusively large scale and independent of electrode size [9].
The way electrodes play a role, however, is the spatial coverage. It is only intuitive to
put as many sensors as possible to an area of interest. For example, if motor imagery is
being researched, one would want to populate the somatosensory area (see Figure 2.1)
with many electrodes.

2.1.1 EEG Recording Artifacts

While recording brain activities, it is mostly the case that signals from irrelevant sources
get picked up by the recording system. These undesired signals are referred to as noise
or artifacts, and EEG is notoriously susceptible to them. A wide range of sources can
cause artifacts. Common artifacts for EEG recordings are the high frequency line noise
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2 Scientific Background and Related Research

(50 or 60 Hz depending on where the recording is done), muscle activity, skin potential
drifts, movement of the participant, electromagnetic interference coming from other
electronic devices, and eye blinks.

Since there is a big variety of noise sources, researchers have also been working on
ways to remove these noise sources from recordings. This is mostly done by spatial and
temporal filtering methods that can increase the signal-to-noise ratio (SNR) by enhancing
the control signal and/or reducing noise [10]. But one thing to keep in mind is that a
cleaned signal cannot replace a clean signal.

2.2 Motor Imagery

EEG recordings are well-suited to capturing oscillatory brain activity or "brain waves" [8].
These brain waves are generated by the synchronous activity of large neuron populations
and have characteristic frequency ranges and spatial distributions. One of such brain
waves is called "alpha waves" or "alpha rhythm" and falls in the range of 8-13 Hz. It is a
very dominant brain wave that can even be seen in EEG recordings without the need for
extensive filtering.

A brain wave of interest for this study is the mu rhythm that oscillates with a frequency
of 8-12 Hz. As it can be seen, the alpha and mu rhythm frequency bands overlap. The
difference is, however, their spatial distributions. While the alpha rhythm is mostly
observed in the occipital region, the mu rhythm is seen over the sensorimotor region (see
Figure 2.1). Thus it is also referred to as the sensorimotor rhythm. Actually sensorimotor
rhythms fall into two more major frequency bands: beta (18-30) and gamma (30-200+
Hz) [11]. But due to the Nyquist Theorem, to be able to reliably capture the whole
Gamma rhythm, sampling rates over 500 have to be used. So most researchers focus on
the mu and the beta bands. For the purpose of this study, the main focus will be on the
mu band.

It was repeatedly shown that there is a decrease in the mu rhythm during limb
movement [12] [13] [14]. This decrease is called the event-related desynchronization
(ERD) [15]. If however the SMRs are increased in association with sensorimotor rhythms,
it is called a event-related synchronization (ERS) [16]. Interestingly the ERDs are
observed also when a movement is imagined. This is called a motor imagery (MI). It is
the act of imagining a motion but not executing it.

It was shown that MI produced neural activity that is spatiotemporally similar to the
motor execution case but smaller in magnitude [17]. The main focus of this study is
the MI of the hands. The MI imagery of the hands cause an ERD for the contralateral
and an ERS for the ipsilateral hemisphere [8]. In simpler terms, this means that right
hand MI causes an ERD on the left hemisphere while a left hand MI causes an ERD
of the right hemisphere. Looking at the electrode positions on a typical EEG setup, it
can be concluded that during a left hand MI an ERD has to be seen at the C4 electrode,
whereas a right hand MI should cause an ERD at the C3 electrode. The corresponding
plots can be seen in 2.3a.
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2.3 ERD/ERS Calculation

This phenomenon is also captured by the so called motor homunculus seen in Figure
2.1 (b). The homunculus is a geometric mapping between body parts and motor/so-
matosensory cortex and it again shows that the hands are contralaterally arranged.

Source: Blankertz - Optimizing Spatial filters for Robust EEG Single-Trial Analysis [18]
Figure 2.1: (a) Lobes of the brain: frontal, parietal, occipital, and temporal (named after
the bones of the skull beneath which they are located). The central sulcus separates the

frontal and parietal lobe. (b) Geometric mapping between body parts and
motor/somatosensory cortex. The motor cortex and the somatosensory cortex are

shown at the left and right part of the figure, respectively. Note that in each hemisphere
there is one motor area (frontal to the central sulcus) and one sensori area (posterior to
the central sulcus). The part which is not shown can be obtained by mirroring the figure

folded at the center. [18]

2.3 ERD/ERS Calculation

The classical ERD/ERS method calculates the instantaneous power as:

Pj =
1
N

N

∑
i=1

x2
fi,j

(2.1)

where Pj is the averaged power estimation of band-pass filtered data (averaged over
all trials) and x fi,j is the j-th sample of the i-th trial of the band-pass filtered data [19].

This estimation of the band power is then divided into the period of interest A and
the baseline or reference period R. Consecutively, the ERD or ERS is defined as [20]:

ERDj =
Aj − R

R
· 100% (2.2)
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2 Scientific Background and Related Research

with

R =
1
k

n0+k

∑
j=n0

Aj (2.3)

where Aj is the power at the j-th sample.
A schematic showing the steps of this method can be found in Figure 2.2

2.4 Spatial Filtering

As the name suggests, spatial filtering is filtering signals in the spatial domain. This
means that the positional relationships of the signals are taken into account. In the case
of EEG recordings, this mostly refers to the positions of the electrodes. Possible goals of
spatial filtering include increasing the SNR, enhancing local activity, identifying hidden
sources, or finding projections that maximize discrimination between classes [8].

2.4.1 Re-referencing

A commonly used spatial filtering method is re-referencing. Three main re-referencing
methods are bipolar, Laplacian, and common average referencing (CAR). An overview
of these methods can be found in Figure 2.4 and two of them will be introduced below.

2.4.1.1 Surface Laplacian

There are two different surface Laplacians, namely the small Laplacian and the large
Laplacian. The small Laplacian is obtained by re-referencing an electrode to the mean of
its four direct neighbors. Whereas for the large Laplacian the next nearest neighbors are
used.

The Laplacian method acts as a high-pass spatial filter that makes localized activity
more prominent and reduces more spread out activity. Simulation studies showed that
it can achieve high spatial resolution given that there is enough sensor coverage, e.g.,
64 channels [10]. But it was shown that good results can be obtained from only nine
channels [22]. It has to be noted that border electrodes are omitted during Laplacian
re-referencing [23].

2.4.1.2 Common Average Reference

Common average reference is quite similar to the Laplacian method as it also acts as
a high-pass spatial filter. This time all available channels are used to compute the
mean and this mean is used as the new reference. In other words, the average over all
electrodes is subtracted from each electrode. The idea is that this averaged brain activity
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2.4 Spatial Filtering

Source: Pfurtscheller and Lopes da Silva - Event-related EEG/MEG synchronization and
desynchronization: Basic principles [20]

Figure 2.2: Schematic diagram showing the computation steps of ERD/ERS. The raw
EEG data is first band-pass filtered in the frequency range of interest. Then the filtered
signal is squared and averaged over each trial. On the left plot an ERD can be seen, that
is recognizable by the decrease in the relative power. The right plot shows an increase in

the band power, which is referred to as an ERS.
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2 Scientific Background and Related Research

is the EEG noise [24]. As the same operation is done on each electrode, CAR does not
privilege any particular electrode [25] and this can be easily seen from its equation:

s̃i = si −
1
N

N

∑
n=1

si (2.4)

where si is the signal from channel i and s̃i is the re-referenced signal.

2.4.2 Common Spatial Patterns

As mentioned before, the band powers play a very important role when it comes to
designing BCIs. Bearing in mind that a convenient way to get an estimate of band
powers of filtered EEG signals is to compute their variance [23], it becomes clear that an
efficient algorithm that can discriminate different types of brain activity shall rely on
the variances of filtered data. Given that the labels of filtered data variances are known,
common spatial patterns (CSP) can be used for this purpose.

CSP is a supervised spatial filtering method that transforms EEG data into a new
space where the variance of one class is maximized whereas the variance of the other
class is minimized [26]. Consequently two classes can be discriminated more easily.
Later work showed that it can also be extended to be used in a multi-class setting [27].

CSP was first introduced in [28]. Then it was first used in EEG analysis to extract
abnormal components from the clinical EEG [29]. CSP was later adapted to EEG data
classification of movement-related patterns [30]. Now, it is a widely used method to
classify EEG data, especially motor imagery.

In most studies a wide filter band is used. This band can vary from 8-30 Hz [23] to
4-40 Hz [31] depending on the application. The argumentation behind this choice is that
this broad frequency band contains both the mu and beta frequency bands which were
shown to be important for movement classification [32]. In one study it was shown that
the 8-30 Hz broad band outperformed narrow bands in classification [30].

Although the implementation can vary slightly based on the study, it is going to be
introduced in the following as it was used in this study:

The first step is to band-pass filter the data in the range of interest, in accordance
with the previous discussion about the frequency band. The filtered continuous data is
then epoched. This means that it is cut into individual trials or epochs. Each epoch is
usually time-locked to a cue, for example the start of a motor imagery period during
the recording.

Let it be assumed that raw EEG data for a single epoch is represented as an NxT
matrix X, where N is the number of channels and T is the number of samples per
channel in each epoch. Trivially T is dependent on the sampling rate of the EEG system
and the epoching window.

Due to the band-pass filtering, the constant part of the EEG data has been removed
and the mean of the distribution is thus zero. That is why the first place to look for
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2.4 Spatial Filtering

characteristic information is in its second moments, or the covariance matrix [30]. The
normalized spatial covariance matrix of the EEG can then be estimated as:

R =
XXT

trace(XXT)
(2.5)

The matrix products correspond to averaging over time [30] and the trace normaliza-
tion is done to eliminate magnitude variations in the EEG among different individuals
[29]. It has to be noted that this normalization can be omitted. In this case the covariance
matrix is estimated as XXT.

The covariance matrix is then computed for both classes separately:

R1 =
X1XT

1

trace(X1XT
1 )

R2 =
X2XT

2

trace(X2XT
2 )

where the subscripts denote different classes (e.g. left and right hand imagery).
The next step is the eigenvalue decomposition of the composite covariance matrix

which is the sum of the covariance matrices computed earlier:

Rc = R1 + R2

Rc = UλUT (2.6)

Since Rc is a real symmetric matrix, U is an NxN orthogonal matrix whose columns
are orthonormal eigenvectors of Rc and λ is a diagonal matrix whose entries are the
corresponding eigenvalues.

The whitening transformation is then defined as:

P = λ−1/2UT (2.7)

This transformation equalizes the variances in the space spanned by the eigenvectors
in U [30]. If the class-specific covariance matrices are transformed using this whitening
matrix by

S1 = PR1PT (2.8)

S2 = PR2PT (2.9)

then S1 and S2 share common eigenvectors (basic spatial patterns), since

S1 + S2 = PRcPT = I
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If the eigenvalue decomposition of S1 is given as

S1 = Bψ1BT (2.10)

then the S2 can be factored as:

S2 = Bψ2BT (2.11)

where B is orthonormal.
In this case the diagonal eigenvalue matrices ψ1 and ψ2 always add up to the identity

matrix:

ψ1 + ψ2 = I (2.12)

Thus the variance accounted for by the first m eigenvectors which correspond to the
m largest eigenvalues in ψ1 will be maximal for class 1. Due to the constraint on ψ2 in
equation 2.12, the variances accounted for by these eigenvectors must be minimal for
class 2. The reverse will hold true for the last m eigenvectors [29].

The CSP projection matrix is calculated as:

WCSP = BTP (2.13)

Finally, the CSP projection matrix can be computed as:

Z = WT
CSPX (2.14)

The columns of of W−1
CSP are the so called common spatial patterns and can be seen as

time-invariant EEG source distribution vectors.
The feature vector can be calculated as:

gp = log(
var(Zp)

∑2m
p=1 var(Zp)

) (2.15)

To calculate the feature vector, the first and last m rows of Z are used. a common
value for m is 2 [30]. Conversely gp

1 has the length 2m. This vector can be computed for
each trial and then concatenated into a feature matrix F:

G = [g1, g2, ..., g2m]
T (2.16)

1In the literature the feature vector is usually denoted by fp. Here gp was used for notation instead to
avoid confusion with the frequency sub-bands from SFBCSP.
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2.4 Spatial Filtering

2.4.3 Sparse Filter Band Common Spatial Patterns

CSP has been proven to produce very good results when it comes to EEG data classifica-
tion [30] [33] [34] [18]. But a major setback is the participant-specific filter bands to give
to the CSP algorithm. It is very difficult to determine this individual frequency bands
for each application, as it would require extensive searching. Furthermore, as discussed
before, a poor selection of the filter band may result in poor performance of the CSP [35]
[18]. This is why various different approaches were proposed to boost the effectiveness
of CSP.

Common sparse spectral spatial patterns (CSSSP) aims to find spectral patterns which
are common across channels by optimizing an adaptive finite impulse response (FIR)
filter simultaneously with the CSP [36].

On the other hand, an intuitive solution to the individual-specific optimal frequency
bands problem is to compute the CSP of different frequency sub-bands and combining
the results in an efficient manner. Thus, sub-band common spatial patterns (SBCSP)
proposes to do exactly this. SBCSP filters the EEG data at different frequency sub-bands
and computes the CSP for each of these sub-bands. Linear discriminant analysis (LDA)
is then used to decrease the dimensionality of the feature matrix [37].

Similar to this approach is the sparse filter band common spatial patterns (SFBCSP).
This method uses sparse regression to automatically choose the significant CSP features
computed from individual sub-bands [31].

For SFBCSP, raw EEG data is band-pass filtered using a set of overlapping subbands.
The sub-bands are chosen from the frequency range 4-40 Hz with a bandwidth of 4 Hz
and an overlapping rate of 2 Hz. This means K=17 sub-bands are extracted: f b1 = 4-8
Hz, f b1 = 6-10 Hz, ..., f bK = 36-40 Hz.

The next step is to compute the CSP features of each sub-band using equation 2.15.
This results in a feature matrix G:

G =

 g1,1 ... g1,2MK
...

. . .
...

gN,1 ... gN,2MK

 (2.17)

Here, gi,j denotes the j-th features extracted from i-th epoch. N = N1 + N2 is the
total number of epochs which is calculated by summing the number of epochs for both
classes.

SFBCSP then uses the Lasso estimate [38] for significant CSP feature selection:

u = arg min
u

1
2
‖Gu− y‖2

2 + λ ‖u‖1 (2.18)

where ‖.‖1 denotes the l1-norm, y the vector containing class labels, and u the sparse
feature vector to be learned based on the sparsity vector λ. A larger λ could result in a
more sparse u and the optimal value is chosen by cross-validation.

After learning is done, the non-zero coefficients of u are the significant features to be
used. Since the ordering of the feature vector is equal to the ordering of the columns
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2 Scientific Background and Related Research

of G, after learning is done, the results can be visualized for each participant to show
which frequency sub-bands are optimal for them. Exemplary results from the original
study can be found in Figure 2.5. It can be seen that the chosen sub-bands for each
participant is different, which is in line with the previously mentioned phenomenon
that the optimal frequency bands for CSP are usually participant-specific.
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2.4 Spatial Filtering

Source: Pfurtscheller et al. - Current Trends in Graz Brain–Computer Interface (BCI) Research
[21]

(a) Average power in the alpha band (here, 9–13 Hz; called the mu band over motor areas)
during motor imagery based on EEG signals from the left (C3) and right sensorimotor cortex

(C4). Positive and negative deflections, with respect to baseline (0.5 to 2.5 seconds), represent a
band power increase (ERS) and decrease (ERD) respectively. The cue was presented at 3s for

1.25 seconds. [8]

Source: Pfurtscheller et al. - Current Trends in Graz Brain–Computer Interface (BCI) Research
[21]

(b) Distribution of ERD on the cortical surface calculated from a realistic head model, shown 625
ms after presentation of the cue [8]

Figure 2.3: Oscillatory EEG activity used in the Graz BCI.
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2 Scientific Background and Related Research

Source: Rao, Brain-Computer Interfacing: An Introduction. [8]
Figure 2.4: Schematic diagram showing three basic spatial filtering techniques. Bipolar

filtering involves taking the difference between two electrodes. Laplacian filtering
involves subtracting from each electrode the average of four nearest- neighbor

electrodes. Common average referencing (CAR; outer circle) involves subtracting the
average over all electrodes.

Source: Zhang et al., Optimizing spatial patterns with sparse filter bands for
motor-imagery based brain–computer interface [31]

Figure 2.5: Sparse vectors and the most significant spatial filters learned by the SFBCSP
method for each of the five participants in BCI Competition III dataset IVa. The feature
indicated as 1, 2, ..., 34 correspond to the filter subbands 4-8 Hz, 6-10 Hz, ..., 36-40 Hz

respectively.
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3.1 Design of the Experiments

3.1.1 Setting Up the EEG

The experimentation for the eye blink detection was done with a wireless EEG system
by g.tec neurotechnology GmbH called Unicorn Hybrid Black (UHB). UHB is a wireless
EEG system that comes with a Bluetooth 2.1 interface. It also has a 3-axis (x, y, z)
accelerometer and a gyroscope to detect head movements.

UHB consists of eight conductive rubber electrodes (Fz, C3, Cz, C4, Pz, PO7, Oz, PO8)
with 24 bits resolution, a sampling rate of 250 Hz per channel, and an input sensitivity
of ± 750 mV. The electrodes can be used for both dry or wet measurements (with
conductive gel). A picture of the system and its sensor coverage can be seen in Figure
3.1.

For the purpose of this study, only dry measurements were made as the developed
systems were intended to be used for home assistance. It has to be kept in mind that it
is generally not feasible to use a wet electrode system for such an application due to the
extra effort and time to set up the system, as discussed before. Especially when it comes
to patients with neurological conditions, this becomes even more unfeasible.

Before putting on the EEG cap on the participant’s head, two sticky reference elec-
trodes were placed behind the ears on the mastoids. Then the distance between the
nasion and inion was measured. After mounting the EEG cap, the Cz electrode should
be sitting directly in the middle of this distance. Then it was checked, whether the cap
sits symmetrically on the participant’s head. Having done the necessary adjustments,
the left and right reference electrodes were connected with the sticky electrodes from
before, and the chin belt was closed. Being cautious and thorough with these steps
minimized the variance of channel locations among different sessions.

It mostly took some time for the temperature of the electrodes (especially the sticky
reference electrodes) to match the participant’s body temperature. After a short period,
the signals were checked through the Unicorn Suite Hybrid Black software. Unfortu-
nately, UHB does not support native impedance measuring, so only a signal quality
estimate based on the standard deviation of the last two seconds of the signal was shown
by the software. If none of the channels showed significant deviations from the rest or if
there were no heavy fluctuations in the signal, it was assumed that the signal quality
was good enough to proceed with the recording.
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Source: https://www.unicorn-
bi.com/product/unicorn-hybrid-

black/
(a) Unicorn Hybrid Black EEG

headset. It is a wireless system that
uses Bluetooth 2.1 and consists of 8
passive dry electrodes that can be

used either wet or dry.

(b) Channel locations of the Unicorn Hybrid
Black EEG headset. A frontal electrode (Fz) can

be used for eye blink detection, whereas the
electrodes over the sensorimotor cortex (C3, C4

and Cz) can be used for MI.

Figure 3.1: Unicorn Hybrid Black.

3.1.2 Eye Blink Detection

Early on in the development of the system, it was easier to test out if the eye blink
detection was working as intended by looking at the real-time EEG signal of the used
Fz electrode and the changing threshold for blink detection. In accordance with this
realization, the experimentation of the system was adapted to accommodate testing of
different feedback options. For both the single blink detection and the double blink
detection systems three cases were tested: no feedback (NF), visual feedback (VF) of the
signals and control feedback (CF) where the participants could control two peripherals
(a vibrotactile motor and an LED) of an ESP32 circuit with their blinks.

Two healthy adult male participants (participant 1 and 2) in their early twenties
attended the eye blink detection experiment. The experiment consisted of one session to
test the hypothesis, whether it was possible to use the system within this only session.

3.1.2.1 ESP32

As mentioned before, one goal of this study was to research whether the developed sys-
tems could be used for home assistance applications, bearing patients with neurological
disorders in mind.

For this purpose an ESP32 microcontroller was used to set up a simple circuit con-
sisting of a vibrotactile motor and an LED. The schematic of this circuit can be seen in
Figure 3.2. Then a wireless UDP (User Datagram Protocol) connection was established
with the ESP32. This way, by sending either a 1 or a 0 as a byte, the Python script for
the eye blink detection could wirelessly communicate with the microcontroller.
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3.1 Design of the Experiments

Source: https://www.circuito.io/
Figure 3.2: Circuit schematic showing the components of the ESP32 setup. The ESP32
microcontroller is connected to a vibrotactile motor and an LED. It is also connected

with the eye blink detection system over a UDP connection. This allows a single blink
detection to activate the vibrotactile motor and a double blink to light up the LED.

Depending on which byte was received by the ESP32, either the vibrotactile motor
would vibrate or the LED would light up. This activation lasted for 0.5 s.

The purpose of this setup was that it acted as a proof of concept for an home assistance
applications. For example, lighting up the LED could correspond to switching the lights
on and of or turning the TV on and off. On the other hand, the vibrotactile motor could
act as a bell that can be placed in the caretaker’s room for the patient with neurological
conditions to quickly call the caretaker. More on this can be found in chapter 6.

3.1.2.2 Single Blink Detection

As mentioned, the first part of the experiment was testing out the NF case for the single
blink detection. The participants were shown two cues, either a cue to do nothing or a
cue to do a single blink. These cues can be seen in Figures 3.3a and 3.3b respectively.

Before starting with the first block, the participants were asked to voluntarily blink
for a few times. For each successful eye blink detection, the experimenter told the
participants that they could produce a successful eye blink that could get detected by
the system. This testing done for two reasons.

The first reason was to adjust the participant-specific eye blink detection threshold
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3 Experimentation and Evaluation

parameter. The second one was to give the participants a few trial runs to get used to
the system before starting with the recording. This was however limited to a maximum
of five tries to reduce the effect of learning before the recording started, as the initial
hypothesis was that the eye blink detection system could be effectively used without
extensive training.

(a) Cue to do nothing. (b) Cue to do a single blink. (c) Cue to do a double blink.

Figure 3.3: Different cues shown to the participants during the eye blink recording.

After the first NF part of the experiment was over, there was a pause of 2-3 minutes
for the participant to relax and get ready for the next part. This pause took place after
each part during the whole experimentation so it will not be repeated for the upcoming
parts.

In the second part of the experiment, the VF case was tested. Participants were shown
on a second monitor the real-time signal of the Fz electrode and the moving detection
threshold. They were requested once again to produce eye blinks. This way they could
see for themselves how the eye blink signals looked like. They were made aware how
the threshold adapted itself according to the variance of the baseline period. Then they
were requested to blink exactly when a prior blink entered the baseline period. Thus
they could see that the system was unresponsive during this period as the detection
threshold was too high to be reached by any eye blink.

Having been introduced to how the real-time signal and the threshold interact, the
participants were once again ready for the recording. Both monitors were placed directly
next to each other so that the participants could keep the cues in their peripheral
view while they were looking at the signal’s real-time course. As there were no other
distractions in the recording chamber, participants could easily focus on the signal on
one monitor while keeping the cues on the other monitor in sight.

For the CF part of the single blink detection experiment, participants were first
introduced to the ESP32 setup. Concretely, they were shown where the vibrotactile
motor was and how it vibrated when it received a control signal. To familiarize
themselves with the new setup, they were once again requested to do voluntary eye
blinks for a few times. They could then see that the vibrotactile motor vibrated every
time a blink was detected.

Just like for the VF, the participants were requested to keep the cues in their peripheral
view while observing the motor. The circuit was placed directly in front of the monitor
that showed the cues for convenience. Again, the participants could easily accomplish
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the task of following the circuit’s reaction and the visual cues simultaneously. The
recording was started after a few trial runs.

3.1.2.3 Double Blink Detection

After the first three parts of the experiment were successfully accomplished, the double
blink detection mode was activated. The participants were already familiar with the
setup at this point but the double blink detection required further elaboration. As
previously mentioned, if the second blink was produced directly after the first one, the
amplitude of the second peak did not go as high as the first peak. This was mostly
overcome by the double blink detection algorithm but participants were informed about
this phenomenon. The purpose of this was to allow participants to time their second
blinks better.

Since the double blink setup was not as intuitive as the single blink one, the trial run
periods before each recording block were increased from five tries to eight.

After this introduction to the new setup, the three parts with different feedback
options (NF, VF and CF) were repeated once again for the double blink detection. The
main difference for this part of the experiment was that there was a new cue indicating
that the participant should do a double blink. This cue can be seen in Figure 3.3c.

In the CF setup a single blink still made the vibrotactile motor vibrate. However,
this time a double blink was used as a second control signal to light up the LED in the
circuit.

Each of the six parts consisted of two blocks of 20 trials. Each cue had equal weights,
meaning that for the single blink case there were 10 rest trials and 10 single blink trials.
For the double blink case each of the three cues had a minimum of 6 trials, whereas two
out of three cues were randomly chosen to have a seventh trial each, so that the number
of trials add up to 20 again.

A trial was defined as the sum of a prestimulus period of 3 seconds, cue being shown
for another 3 seconds, and a pause of 2-3 seconds. The pause duration was chosen
randomly to prevent participants from anticipating a new trial. This meant that a single
trial lasted about 8-9 seconds. A block was defined as a collection of trials. In this case
a block consisted of 20 trials. After each block there was a small pause of 4 seconds.
Taking everything into account, 40 trials were recorded for each feedback condition.

3.1.2.4 Sending Markers

Throughout the whole recording, time markers were sent from the cue and eye blink
detection scripts. Every time a cue was shown on the screen, a marker with the name
of the cue and the current time was written as a string value to a CSV file. The same
applied for every time a blink was detected. In the case of double blink detection two
different markers were sent to distinguish between a single blink detection and a double
blink detection. All the scripts were run locally on a single computer.
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3.1.3 Acquiring the BCI Competition IV Data Set 1

The data set used to test the feasibility of the offline analysis methods for MI was
publicly available. It is provided by the Berlin BCI group [5] and can be downloaded
under http://www.bbci.de/competition/iv/#dataset1.

The recording was done using BrainAmp MR plus amplifiers and an Ag/AgCl
electrode cap. Recorded signals from 59 EEG positions were band-pass filtered between
0.05-200 Hz and then digitized at 1000 Hz with 16 bit accuracy. A downsampled version
of the data at 100 Hz was also made available, which was used in this study.

For each participant two classes of motor imagery were selected from the three classes
left hand, right hand, and foot (which foot to imagine was chosen by the participant;
optionally both feet could also be imagined).

In each trial a fixation was shown for 2 s. Then visual cues (an arrow pointing either
left, right or down based on the classes chosen) were superimposed on the fixation for 4
s in which the participant had to imagine moving the selected limb. After the imagery
period was over, there was a 2 s pause. The data set included all the markers for the
cues. For the current study only the calibration data was used both for training and
testing the offline analysis methods.

3.1.4 Recording Motor Imagery Data

For recording MI data, the paradigm introduced in [6] was used. Since there are two
paradigms in the mentioned study, one with and one without feedback, it should be
noted that the one without feedback was adapted. From now on this paradigm will be
referred to as the Graz paradigm.

As it can be seen in Figure 3.4, a trial starts with a fixation cross. After 2 s a short
beep (1 kHz, 70 ms) was played indicating that a visual cue was going to show up on
the screen. The cue, which was an arrow directing either to the left or to the right, was
then superimposed on the fixation for 1.25 s. After the cue was shown, the participants
had to imagine the corresponding hand movement for 4 s. Then there was a pause of at
least 1.5 s. A value between 0 and 1 s was randomly chosen and appended to this pause
period to avoid adaptation. The ending of the pause period ended the trial as well.

The only alteration done to the Graz paradigm was to match the Berlin BCI paradigm.
Concretely, the minimum pause length was increased from 1.5 s to 2 s. This way both
types of trials could be epoched in the same time window. It was assumed that this extra
0.5 s pause between each trial would not have any effect on the data analysis results.

Each session consisted of six blocks with 20 trials each. Each block had an equal
number of class cues, meaning that in each block 10 left and 10 right hand MI trials
were recorded.

In this part of the experimentation EEG data and cue markers were going to be
recorded simultaneously. For this purpose the LabRecorder software was used. LabRecorder
allows recording lab streaming layer (LSL) streams on the same network into a single
XDF file, with time synchronization between streams. Fortunately, UHB had an LSL
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3.1 Design of the Experiments

Source: Leeb et al. - Brain–Computer Communication: Motivation, Aim, and Impact of
Exploring a Virtual Apartment [6].

Figure 3.4: The timing scheme of the Graz paradigm for MI recording. The steps of a
full trial are illustrated. The trial starts with a fixation on the screen. Then an audible

beep alerts the participant. After that a cue is shown to indicate the MI of either left or
the right hand. The trial ends with a pause period.

interface. This way both the EEG data from UHB and the markers sent by the marker
script could be simultaneously recorded.

The recording of EEG data from UHB could also be done through the Unicorn Suite
Hybrid Black software. This way the recorded data would get saved into a CSV file. But
since time synchronization of the data and marker streams was of utmost importance,
LabRecorder was chosen for this task.

The EEG setup for recording MI data did not differ dramatically from the setup for
the eye blink detection. The main difference was that during this experiment even more
attention was paid that the participants were comfortable, as it was shown that headache
and discomfort can cause a reduction in cognitive performance [39] [40]. Another rather
trivial point was that the participants had to be seated in an upright position. This was
shown to improve focus and the quality of the recording [41].

Prior to the recording, the participants were asked to think of two to three motions
that they could imagine the easiest. They were told to try imagining doing this motion
with their hands and also focusing on the sensation this motion would bring. For
example, if the imagined motion was to squeeze a ball, they were asked to imagine the
resistance they would feel in their hands while they were squeezing the ball.

The participants were then instructed that they should perform left hand imagery
when the left cue was shown and right hand imagery when the right cue was shown.
They were asked to minimize their blinks during trials and to try to blink only in the
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(a) Cue to perform left hand
motor imagery.

(b) Fixation shown on the
screen before a left or right
cue. It is shown so that the

participants’ eye movements
are minimized.

(c) Cue to perform right
hand motor imagery.

Figure 3.5: Different cues shown to the participants during the motor imagery recording.

pause periods between each trial. After this initial introduction, the participants were
ready for the recording.

For this part of the experiment two healthy right-handed male participants (participant
3 and 4) were recorded for four consecutive days. Each day a recording of 20 trials and 6
blocks were done for each participant, just like for the Graz paradigm. Thus, by the end
of four days, there were 480 trials, 240 left hand imagery and 240 right hand imagery,
for each participant.

3.2 Evaluation of the Results

The experiments were designed to make it possible to address the scientific questions
posed in chapter 1. However, it was equally important to define the evaluation metrics
to ensure that the experimentation results could get correctly interpreted.

3.2.1 Eye Blink Detection

The results of the eye blink detection system were evaluated based on the reaction times
(RTs) and the detection accuracies. The detection accuracy metric also included the false
detection rate.

RT was defined as the time difference between cue onset and blink detection. Detection
accuracy was the ratio between successfully detected blinks after a cue was shown and
the total number of cues. On the other hand, the false detection rate was the ratio
between the number of detected blinks during rest trials or pauses and the total number
of rest trials or pauses. All these metrics were evaluated separately for different feedback
conditions.

The proposed metrics were suitable for answering questions 1-4 in chapter 1 because
they captured the system’s performance and created a common basis for comparing
different feedback conditions.
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Whether eye blinks could be used as control signals was addressed by combining
the eye blink detections with the ESP32 and its peripherals. If the peripherals could be
controlled by eye blinks, it would be assumed that detected blinks could be used as
control signals for IoT devices.

3.2.2 Motor Imagery

As mentioned before, the three methods used to analyze motor imagery data were
ERD/ERS, CSP, and SFBCSP.

If ERD/ERS curves similar to the ones seen in Figure 2.3a could be produced, then it
would be shown that the ERD/ERS implementation worked correctly and the prepro-
cessing of the data was helpful to highlight these features.

The expectation from CSP was that it would help classify unseen test data as either
belonging to one MI class or the other. If accuracy scores of at least 10% above chance
level could be acquired, then it was going to be shown that the implementation of the
algorithm was working as intended. Concretely, this meant that the results would be
deemed acceptable only when the accuracy scores were above 60%. If accuracy scores
above 70% could be achieved, it would be concluded that good results could be obtained
with CSP.

The metric SFBCSP was evaluated on was whether it would provide better accuracy
scores than CSP for more than one participant. If CSP showed the desired results,
SFBCSP was selected to be the next step of the pipeline to increase performance. Bearing
the original study [31] in mind, a performance boost of at least 5% had to be achieved
for the SFBCSP classification to be considered better than CSP. Otherwise, the high
computational complexity was not considered feasible compared to normal CSP. These
metrics were suitable to answer questions 6 and 7.

The evaluation metric of question 8 was whether an online system with one or two
control signals using MI could be built using Unicorn Hybrid Black.

If such an MI-BCI could be built, then the answer to whether eye blinks could aid
such a system would rely on adding one or two more control signals to the system using
eye blinks. If only an eye blink detector could be built, this question would be addressed
by discussing the possible future integration of both systems. If none of the systems
could be built, the question would be left unanswered.
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4.1 Single Eye Blink Detection

Eye blinks appear as prominent peaks in the EEG signal. This prominence led to the
idea that a simple threshold model could detect eye blinks in the signal. In other words,
when the signal amplitude exceeds a certain threshold, it should be classified as an eye
blink.

Early in the development, it was seen that setting the threshold too low would result
in random signal fluctuations to get falsely detected as eye blinks. On the other hand,
setting it too high would result in no blinks getting detected. Fixing the threshold to a
suitable value before each recording seemed to have solved this issue.

However, the signal amplitude changes over time caused another issue. Sometimes
after the recording started, a higher threshold was required because, for example, the
electrodes could move due to too strong blinking, and thus the overall signal amplitude
would increase. Alternatively, sometimes the opposite was held. After the temperature
of the mastoid reference electrodes matched the person’s body temperature, the noise in
the signal would decrease, making the overall amplitude slightly smaller than what the
threshold was initially set for.

These issues were addressed by implementing an adaptive threshold. The threshold
would get updated in real-time based on the signal in a baseline window. In each
iteration, the mean and the standard deviation of this baseline were calculated. A factor
c was then multiplied with the standard deviation, and the result was added to the
mean. This value would give the height of the current threshold.

More concretely, let T denote the threshold value, xBL the mean of the baseline and
σBL the standard deviation of the signal in the baseline window. Then the update rule
for the threshold was defined as:

T = xBL + cσBL (4.1)

Furthermore, let D ∈ {0, 1} denote a Boolean variable specifying whether a blink was
detected (1) or not (0) and x the amplitude of an arbitrary sample. Then the eye blink
detection rule was defined as:

D =

{
0 x ≤ T

1 x > T
(4.2)

Since the system worked in real-time, only the most recent samples were of interest
when looking for an eye blink. Concretely, this meant that it was enough to apply
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equation 4.2 to a small window at the very end of the signal buffer, called the activity
window. Lastly, since the goal was to detect single eye blinks and such eye blinks
appeared as singular peaks, the maximum value in the activity window was enough to
use as the sample amplitude x in equation 4.2.

These steps were done after band-pass filtering the signal between 1-30 Hz and
applying a moving average filter to smoothen the signal. For band-pass filtering, a
one-pass, zero-phase, non-causal filter was used. As the filtering was done on data
buffers, using a non-causal filter was possible. Following the recommendations from
[42] and [43], the filter parameters can be reported as:

• Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation

• Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)

• Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)

• Filter length: 825 samples (3.300 sec)

As moving average filters act as low-pass filters, it was rather an optional step to apply
it for better visualization. It has to be noted that other smoothing filters, e.g., Gaussian
filter, could be used for this purpose as well, but they were not tested out in this study.

Although it was shown that high-pass filters above 0.1 Hz deteriorate the waveform
of EEG signals [44] [43], as mentioned, 1 Hz was selected for this implementation. There
were three main reasons for this decision.

The first reason was that eye blink signals are muscle artifacts and not brain signals.
This made it irrelevant whether the filtering distorted the waveform, as long as the
filtered signal was used only for eye blink detection. While the system was running, raw
EEG data could still be accessed. This meant that the signal could be filtered again with
a different cutoff frequency for another application, e.g., for MI.

Second, it was intended that the system only detected intense, voluntary eye blinks
and not the spontaneous ones that the user cannot prevent. This phenomenon can be
seen in Figure 4.1. The small peaks around the samples 800, 2100, 2900, 4100, and 4800
were spontaneous eye blinks. They did not get detected because they were sub-threshold
peaks. On the other hand, the peaks around 1100, 1800, and 3300 were voluntary single
blinks with large amplitudes exceeding the detection threshold, thus getting detected as
eye blinks. A 1 Hz high-pass filter was suitable for this task, as it "squished" these small
amplitude peaks and kept only the voluntary peaks intact.

Lastly, a high-pass filter with a lower cutoff rate requires a longer filter, i.e. more
samples to operate on [45]. Concretely, a 0.1-30 Hz band-pass filter would have the
length of 8251 samples, which was larger than the buffer size of 5000 samples. The
buffer size might have been increased to use this filter but this would result in an overall
slower system. This was because the filtering would require more computing power
and also there would be more samples to filter. Since this was an online system that
operated with signal buffers in quasi real-time, keeping the system as light as possible
was desirable.

28



4.1 Single Eye Blink Detection

0 1000 2000 3000 4000 5000

0.0006

0.0004

0.0002

0.0000

0.0002

0.0004

0.0006

V

Band-Pass Filtered Channel Fz

0 1000 2000 3000 4000 5000
Sample

0.0006

0.0004

0.0002

0.0000

0.0002

0.0004

0.0006

V

Moving Average Smoothened Channel Fz (N=25)

Figure 4.1: Different types of eye blinks seen in the frontal channel. New samples arrive
in the buffer from the right. The blue window corresponds to the baseline and the red
to the activity window. Small peaks around samples 800, 2100, 2900, 4100, and 4800 are

sub-threshold spontaneous blinks, i.e., they do not get detected as eye blinks. Peaks
around the samples 1100, 1800, and 3300 are voluntary single blinks with large

amplitudes exceeding the detection threshold, thus getting detected as eye blinks. The
peaks around the samples 200 and 2400 are double blinks. It can be seen that the second

blink has slightly less amplitude than the first.

One of the biggest disadvantages of using a buffer was the existence of edge artifacts
due to filtering [42]. They can be seen at the start and end of recordings. These artifacts
occur because filters try to access samples that are not available. To solve this issue it is
recommended that recordings should start earlier and end later than planned, so that
only these empty periods get affected by edge artifacts and can later get cropped out
[43]. But this cannot be done in an online setting where only fixed signal buffers are
available.

These artifacts could be ignored but unfortunately the random fluctuations that they
cause would sometimes result in a false blink detection. Therefore, a small delay of 20
samples (0.08 s for 250 Hz sampling rate) was introduced to the activity window. This
delay was short enough that the users would not even recognize it but sufficient to solve
the problem of edge artifacts.

The introduced delay can be seen in Figure 4.2. This figure shows the zoomed in end
of the signal. As it can be seen, filtering caused an edge artifact which persisted even
after smoothing the function. The short delay accounted for this small residual. Due to
this delay, the most recent samples reached the red activity window, starting around
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sample 4850, only after 0.08 s.
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Figure 4.2: Edge artifacts due to filtering. At the edge of the buffer, filtering artifacts can
be seen due to the filters trying to reach for samples that are not yet available. A short
delay was introduced to the system to overcome the issue of false blink detections due
to such artifacts. This delay causes the activity window to be shifted slightly to the left.

The last part of this detection algorithm was the implementation of a "refractory
period" for blink detection. Without this period, a blink that the system detected would
keep on getting detected as a new blink until it exited the activity window. This was
because the threshold would not yet get updated until the detected peak entered the
baseline period and increased the standard deviation of the baseline signal. By making
the system go into a refractory period until the peak exited the activity window, this
issue could get resolved.

Concretely, the program would run a predefined number of iterations doing nothing
and waiting for the refractory period to be over. This part was crucial for later, when the
system would send control outputs to the ESP32 microcontroller to activate a vibrotactile
motor. Without the refractory period, the motor would vibrate not only once, but as
many times as the blink would get detected until it exited the activity window.

4.2 Double Eye Blink Detection

The double blink detection system acted in similar terms to the single blink detection
system. The detection of a blink using a threshold value was exactly the same as before.
But this time detecting one blink would not directly cause a single blink detection to be
triggered. If this was the case, there would be no time to detect a secondary blink.
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Therefore, a waiting period was implemented where the program would wait for a
second blink to occur. If a second blink was not detected in a predefined amount of
iterations, a single blink detection signal would get triggered. Otherwise, a double blink
would get detected and the corresponding control signal would get triggered. But the
detection of a second blink needed some special care.

As it can be seen in Figure 4.1, blinks after the first blink had smaller amplitudes. This
meant that the threshold for the first blink detection would most probably be too high
for consecutive blinks. Thus, after the first blink got detected the threshold value was
halved. Then an automatic peak finding algorithm provided by the SciPy Python library
[46] was run. If two peaks were counted in the activity window during the waiting
period a double blink detection signal was triggered.

The question may arise whether it would be feasible to exclusively use this algorithm
for peak detection. But it was observed that this was computationally more expensive
than using a simple threshold value for single blink detection, especially when done
in real-time in each iteration. This sometimes caused the peaks to exit the activity
window, before they could even get detected, i.e. missed blink detections. Therefore,
this peak finding algorithm was only used for finding multiple blinks after a first one
was detected.

Another thing to adapt was the activity window. In the single blink detection, the
activity window was chosen to be as short as possible so that the baseline window was
not too far away from the most recent signals and the system would depend on its recent
past. But this resulted in some some double blinks getting unnoticed because the first
blink would exit the activity window before a consecutive one could enter it. So the
activity window was made wider to allow multiple blinks to fit in.

4.3 Processing of EEG Data for MI

The second part of this study consisted of the investigation of MI signals. For this
purpose first the publicly available BCI Competition IV-1 data set and then the recorded
data set was analyzed. For the EEG data analysis the MNE Python library [47] was used.

4.3.1 BCI Competition IV-1 Data Set

The analysis of the BCI Competition IV-1 data set consisted of three parts: ERD/ERS
analysis, CSP and SFBCSP. For the ordering of the processing steps mostly the recom-
mendations from [43] were followed.

As discussed before, the first step of ERD calculation was to band-pass the signal
in the frequency band of interest. Since the focus was on the mu-band, continuous
EEG data was band-pass filtered in the 8-12 Hz band. For this purpose a one-pass,
zero-phase, non-causal FIR filter was used with the following parameters:

• Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
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• Lower transition bandwidth: 2.00 Hz (-6 dB cutoff frequency: 7.00 Hz)

• Upper transition bandwidth: 3.00 Hz (-6 dB cutoff frequency: 13.50 Hz)

• Filter length: 165 samples (1.650 sec)

Then the continuous data was epoched between 2 s before the cue onset and 6 s
afterwards.

Assuming that the Unicorn Hybrid Black recordings would be noisy and require
either interpolating bad channels or rejecting trials, an automatic way of doing these
operations had to be tested to make sure that they worked as intended. For bad channel
interpolation, RANSAC (random sample consensus) [48] from the PREP pipeline [49] as
re-implemented in the autoreject Python library [50] was used. For automatic rejection
of trials autoreject library itself was used.

The aim of automating the whole pipeline as much as possible was to be able to
transfer the methods used on the "ideal" data set to the data set recorded with the
Unicorn Hybrid Black.

Lastly, for the broad-band CSP, raw continuous EEG data was band-pass filtered
between 4-40 Hz with again a one-pass, zero-phase, non-causal FIR filter was used with
the following parameters:

• Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation

• Lower transition bandwidth: 2.00 Hz (-6 dB cutoff frequency: 3.00 Hz)

• Upper transition bandwidth: 10.00 Hz (-6 dB cutoff frequency: 45.00 Hz)

• Filter length: 165 samples (1.650 sec)

4.3.2 Recorded Data Set

The methods used to analyze the data set recorded with the Unicorn Hybrid Black were
nearly identical to the ones to analyze the BCI Competition IV-1 data set. Also the
band-pass filters used were kept the same. There were only three differences between
these pipelines.

First difference was that a notch filter had to be applied to the data. Unicorn Hybrid
Black was very susceptible to the 50 Hz line noise and its harmonics. Band-pass filtering
the signal was not enough to get rid of this interference. That is why an additional
notch filter was applied to the frequencies 50 and 100 Hz. The power spectral density
plots before and after filtering can be seen in Figure 4.3. Only band-pass filtering did
not remove the line noise at 50 Hz. Also there was some residual interference around
100 Hz. An additional notch filtering cleared most of this noise.

The second difference was that the signal had to be cropped after filtering. This was
because there were extensive periods of data at the start and end of each recording.
Again, this was intentionally done to minimize edge artifacts.
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Figure 4.3: Filtering effects on the PSD plots. Unfiltered (raw) data is contaminated by
line noise at 50 Hz and its harmonics at 100 Hz. 4-40 Hz band-pass filtering the signal
reduces the 100 Hz interference, but the 50 Hz noise remains intact. A combination of

the notch and band-pass filtering eliminates most of the noise.

And lastly, of course the timing of the paradigm was slightly different. Here there
were two main differences. First, the prestimulus period was 3 s long with an audible
beep to alert the participant instead of 2 s without any audible beep. Second, the visual
cue would not remain on the screen for the whole imagery period but would rather
disappear after 1.25 s.

These were very negligible changes and there was no loss of information due to
different timings since the epoched window of -3 to 6 s for the recorded data set
contained the -2 to 6 s window of the Berlin BCI data set (-3 and -2 s refer to seconds
before the cue onset). This means that fundamentally the paradigms were doing the
same thing and consisted of the same periods with only 1 s extra prestimulus data for
each epoch for the recorded data set. But this extra second could be discarded from
epoching, making both epochs the same length. This meant that the results applied to
one data set should be transferable to the other and that results from both data sets
could be compared on a common basis.
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5.1 Single Blink Detection

As mentioned in chapter 3, the blink detection system’s performance was evaluated
based on reaction time (RT) and detection accuracy.

For the single blink detection case, RT results from both participants are shown in
Table 5.1 and visualized in Figure 5.3. Participant 1 could achieve an average RT of 1.07
s across different feedback conditions, whereas it was 0.9 s for participant 2. Thus the
RT of single blink detection was approximately 1 s.

Table 5.1: Single Blink Detection Reaction Times
(Best are marked in bold).

Participant 1 Participant 2

No Feedback 1.02 s ± 0.30 s 0.87 s ± 0.08 s
Visual Feedback 1.06 s ± 0.27 s 0.91 s ± 0.14 s
Control Feedback 1.13 s ± 0.22 s 0.92 s ± 0.11 s

The best RTs were achieved for the case with no feedback (NF). But since the mean
differences between different conditions were rather very small (max. 110 ms), it can be
concluded that the feedback had virtually no effect on the RT of the system.

As a further metric, detection accuracies are shown in Figure 5.1. For each participant-
condition pair different periods of the recording are shown on the x-axis and the
detection accuracies on the y-axis. As a reminder, the participants were instructed to
voluntarily blink every time a blink cue was shown and not to do so after rest cues. What
the participants were unaware of during the recording was that the pauses between
trials would also be taken into account when computing the results.

Considering that there are 20 trials per cue, a minimum detection accuracy of 75%
was acquired. The lowest detection accuracy was detected for the visual feedback (VF)
condition of participant 1. But this low accuracy was mostly due to this recording being
very noisy. Between NF and VF, this participant took off his blazer, moving the reference
electrodes on the mastoids as a result. This resulted in five blinks getting unrecognized.
Only after the VF period was over, the problem was identified and the mastoid reference
electrodes were re-applied. This had a direct impact on the results from the control
feedback (CF) case, which showed the best detection accuracy for participant 1. In short,
the low accuracy of VF for participant 1 was due to bad referencing but was then fixed
for CF.
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Figure 5.1: Detection accuracies of the single blink detector for different feedback
conditions. It can be seen that both participants could reliably produce voluntary eye
blinks after a cue was shown to do so. Furthermore the false detection rates (falsely

detecting a blink) very low across all conditions.

Shifting the focus to rest cues shows that the maximum false detection rate was 10%.
This rate increases to 15% when also the pauses were taken into account. Pause periods
gave a very good estimate of the false classification rate for real-life scenarios. This was
because the participants were not paying the same attention not to produce voluntary
blinks as in rest periods. This is similar to users "forgetting" that the system is on in
a real-life theoretical scenario. That is why pause periods could be seen as worst-case
scenarios and that the false detection rate of the system in these periods was a precious
result.

Although the RTs were the highest for CF with circa 100 ms delay compared to
peak RTs, the accuracies told a different story. For both participants, both the highest
detection accuracies and the lowest false detection rates were achieved in this condition.
Concretely, the false detection rates were 0% for both participants and missed detection
rates were 10% for participant 1 and 5% for participant 2.

Summarized, the results showed that for both participants the accuracies and RTs
were rather uniformly distributed with low false detection and high detection rates.

5.2 Double Blink Detection

Analogously, the RT results for the double blink detection can be seen in Table 5.2 and
again these results are plotted in Figure 5.3.
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Table 5.2: Double Blink Detection Reaction Times
(Best are marked in bold).

Participant 1 Participant 2

Single Blink No Feedback 1.81 s ± 0.24 s 1.78 s ± 0.29 s
Visual Feedback 1.75 s ± 0.15 s 1.60 s ± 0.18 s
Control Feedback 1.68 s ± 0.13 s 1.84 s ± 0.15 s

Double Blink No Feedback 1.46 s ± 0.11 s 1.26 s ± 0.23 s
Visual Feedback 1.41 s ± 0.09 s 1.37 s ± 0.18 s
Control Feedback 1.28 s ± 0.09 s 1.38 s ± 0.25 s

The results show that the RTs for double blinks were better than single blinks. The
reason for that was the implementation of the double blink detection algorithm. As ex-
plained in chapter 4, in the double blink detection case, there was a short waiting period
after the first blink was detected for the second blink to arrive. In the implementation of
the algorithm, this period was defined as 10 while loop iterations which corresponded
to 0.5-0.7 s depending on the system load. It was thus reflected in the increased RTs for
the single blink detection.

This time there was no clear cut which feedback condition gave the best RT among
participants. It can be observed that participant 1 had the fastest RT for CF. At first sight,
it seemed like there was no consensus to which feedback condition provided the best
RT for participant 2. But this required further attention.

As it can be seen in Figure 5.2, nearly half of single blinks were detected as double
blinks. This was due to a poor setting of a participant-specific parameter. As discussed
before in chapter 4, the detection threshold for second blinks had to be decreased due
to the second peak being lower than the first. This parameter was first adjusted for
the noisy signal of participant 1 but not re-adjusted for participant 2 in the beginning
of the experiment. Since the recording of participant 2 was very clean, the threshold
was decreased way too much after each blink detection. This caused even the slightest
increase in the signal to be detected as a second blink. And for most of the trials, this
increase came directly after the first blink. Thus there were a lot of false double blink
detections which accounted for the low RTs. Thus it became evident that NF having the
fastest RT for participant 2 was just due to poor parameter selection.

Of course, the mentioned parameter was corrected after the NF session which in-
creased the detection accuracy performances again. Unfortunately NF could not be
re-recorded, both because of time constraints and to minimize the inter-session learning
effect.

It could be observed that for the double blink detection case false detection rates
during rest periods and pauses were virtually 0%. It can also be seen that an intended
double blink was detected as a single blink more than the opposite case. This is not
the case only for NF condition of participant 2 but it was explained that this was rather
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Figure 5.2: Detection accuracies of the double blink detector for different feedback
conditions. It can be seen that both participants could reliably produce the correct

voluntary eye blinks after the corresponding cue was shown. Furthermore the false
detection rates (falsely detecting a blink) were very low across all conditions (virtually
zero). The band performance of single blink cues in the NF condition of participant 2

was due to poor selection of participant-specific parameters for the setup.

due to false parameter settings. Again, the CF seemed to show the best results when it
came to detection accuracy, both in terms of correct intended motion recognition and
low false recognition rates.

Finally, looking at Figure 5.3 shows again that for both participants the best RTs
were achieved with a single blink detection system. The slowest RTs were seen for the
single blink detections in the double blink detection system due to the waiting period
discussed earlier.

5.3 Offline Analysis of the BCI Competition IV-1 Data Set

The BCI Competition IV-1 data set was analyzed as a test case to see how the methods
proposed in previous studies performed and whether it was feasible to use them on
the data set recorded with the Unicorn Hybrid Black. The results show the ERD/ERS
curves for different participants and the accuracy scores for both CSP and SFBCSP.
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Figure 5.3: Reaction times of both participants for different conditions. SBD: single blink
detector, DBD, double blink detector. The results show that the single blink detector

had the best RT because the system would register a detected blink as soon as the blink
was detected. This was not the case for the single blink detection of DBD because here

the system was waiting for a second blink to occur before registering a single blink.
Consequently, the single blink detection of DBD had the worst RT. However, for both

participants the mean RTs were lower than 2 s across all feedback conditions.

5.3.1 ERD/ERS Curves

ERD/ERS curves of different participants’ left and right hand MI signals were plotted
for three electrodes on the sensorimotor cortex (C3, Cz and C4) before and after spatial
filtering. For each plot x-axis shows the time in seconds. 0 corresponds to the time
when the visual cue was shown to the participants. On the y-axis is the relative power
in percentage.

Figure 5.4a shows that there was no clear distinction between left and right MI. The
prominent peak at around 5.5 s was most probably an eye blink. It is highly possible
that the participant blinked approximately around the same time at the end of every
trial and the averaged epochs retained these peaks.

After applying spatial filtering the results look very different. Figure 5.4b shows the
ERD/ERS curves after CAR. As it can be seen, the classes could be easily separated
from each other.

As expected, C3 showed an ERD of right hand MI starting after about 0.5 seconds after
the cue onset and remained for about 3 seconds. Analogously C4 showed a symmetric
ERD for the left hand MI. Even after spatial filtering there was nearly no difference
between the two classes for the Cz electrode. Bearing the cortical homunculus in mind,
it was expected that there was no ERD observed in Cz, as it is far away from areas
related to the hands. As it will be introduced below, participant E unsurprisingly had
the highest accuracy score on all tested methods.

However these ideal looking ERD/ERS curves could only be seen for participant E.
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As a contrast, the ERD/ERS curves of a worse performing participant B can be seen in
Figures 5.5a and 5.5b. The clear-cut distinction between different classes seems to have
disappeared. There is also a distinctive peak in 3-4 s period which got pressed down due
to the smoothing of the ERD/ERS curves. Most probably, this peak was also generated
by overlapping eye blinks across epochs. Comparing both figures, it can be seen that
CAR worked as intended because it clearly discarded this artifact and highlighted the
distinction between different classes (even though this was a faint distinction).

Although these curves did not look as clean as for participant E, as mentioned, a
distinction between classes can still be made. Looking carefully, it could be seen that the
time period between 2-4.5 s still behaved as expected: C3 showed a stronger ERD for
right hand MI and C4 showed a stronger ERD for left hand MI. This observation came
in handy during CSP computation.

These examples clearly demonstrated that each participant behaved differently. Al-
though a very good result could sometimes be seen for one participant, supporting
the homunculus for example, the same result could be very faint or might have not
appeared at all for others. When it comes to BCIs an all-in-one solution is very difficult
to come by.

5.3.2 CSP

CSP was applied to the data to classify between different classes of MI. Table 5.3 shows
the test set accuracies of different classifiers for different participants. These results
were obtained by band-pass filtering raw EEG data between 4-40 Hz and epoching the
filtered data in the window of 0.5-2.5 s. The parameter m in equation 2.15 was chosen to
be 2. The features were used to train three different classifiers: support vector machine
(SVM), linear discriminant analysis (LDA) and logistic regression.

Table 5.3: Broad-band CSP accuracies for the BCI Competition IV-1 data set
for 0.5-2.5 s epoching

(Best are in bold).

Subject A Subject B Subject C Subject D Subject E Subject F Subject G

SVM 0.77 0.55 0.6 0.83 0.97 0.8 0.92
LDA 0.87 0.53 0.63 0.83 0.97 0.77 0.9
Logistic Regression 0.85 0.53 0.57 0.82 0.93 0.78 0.92

It can be seen that all participants performed above chance level (50%) and except
for participant B, who had a peak accuracy of 57%, all the participants passed the
predefined evaluation metric of at least 60% accuracy. Five participants even performed
above 70% which was another predefined evaluation metric for how well the method
performed. It is remarkable that participant E achieved a peak accuracy score of 97%.

The bad performance of participant B was in line with previous ERD/ERS findings.
Figure 5.5b shows that there was no discriminative power in the 0.5-2.5 s window. Thus

40



5.3 Offline Analysis of the BCI Competition IV-1 Data Set

it was of interest whether extending the current window with the aforementioned 2-4.5
s window would boost the performance of participant B.

Table 5.4 shows that this was indeed the case. Extending the epoching window to
cover the window with the most discriminative power increased the peak accuracy by
18% for participant B. Actually, participants C, D, E and F have also benefited from this
change. Participant E even achieved a 100% test set accuracy. Of course, this should not
be mistaken for an all encompassing classifier for this participant. Proving this point,
the mean score for a 20-fold cross-validation of this classifier was actually 98.57%.

Table 5.4: Broad-band CSP accuracies for the BCI Competition IV-1 data set
for 0.5-4.5 s epoching

(Best are in bold).

Subject A Subject B Subject C Subject D Subject E Subject F Subject G

SVM 0.85 0.65 0.67 0.9 1.0 0.87 0.48
LDA 0.85 0.65 0.7 0.92 1.0 0.83 0.42
Logistic Regression 0.83 0.72 0.7 0.92 1.0 0.85 0.4

Another interesting phenomenon was the decrease of accuracies for participant G.
This shows that more data is not always better. The general conclusion is that each
participant’s neurophysiological data looked different and they should be handled
individually.

Looking at Tables 5.3 and 5.4, LDA and SVM seemed to have worked very well for
the first case, whereas logistic regression performed generally better in the case with a
wider epoching window. However, in both cases peak performances for each participant
were achieved with different classifiers. This meant that choosing participant-classifier
pairs carefully could account for some performance boost. Taking into account that all
three classifiers were linear classifiers, it was remarkable that high-dimensional and
complex EEG data could be linearly separable after proper preprocessing.

5.3.3 SFBCSP

In the next step, results computed from CSP were compared with the ones from SFBCSP.
For this purpose the original epoch of 0.5-2.5 s was used. As SVM had the best overall
results in Table 5.4, it was adapted for SFBCSP as well. The comparison of CSP and
SFBCSP scores can be seen in Table 5.5.

The results show that the implemented SFBCSP could achieve better results for most
participants. Bearing the predefined evaluation metric of at least 5% accuracy boost in
mind, it can be said that SFBCSP passed this test for four out of seven participants.

Participant E was a special case where the performance was already very high and
could not allow a 5% increase. This case was not considered in the evaluation. However,
seeing that the high performance of participant E was retained by the SFBCSP, it can be
assumed that it passed the test for participant E as well.
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Table 5.5: Comparison of SFBCSP and CSP accuracies for the BCI Competition IV-1 data
set for 0.5-2.5 s epoching

(Best are in bold).

Subject A Subject B Subject C Subject D Subject E Subject F Subject G

CSP 0.77 0.55 0.6 0.83 0.97 0.8 0.92
SFBCSP 0.92 0.7 0.72 0.9 0.97 0.5 0.93

The most significant increase in accuracy came from participants A and B with
15%. However, there was a considerable decrease in the performance of participant
F. Comparing the Lasso coefficients for different participants shed some light on this
difference.

As it can be seen in Figure 5.6, the current implementation of SFBCSP was not
particularly sparse. For example, for participant B nearly all the features were used by
the classifier. This contrast between results from the current study and the results from
the original study became even more obvious when Figure 5.6 was compared with 2.5.

Focusing on the current study again, the plot for participant A in Figure 5.6 showed
that there was some sparsity but not as much as for participant F. Most probably, this
significant sparsity of the feature vector for participant F caused the decrease in the
classifier performance. This was unintuitive, as SFBCSP was designed to have sparse
feature vectors. However Table 5.5 shows, for example, the promising results obtained
by non-sparse feature vectors for participant B. These results suggested that choosing
the sparsity parameter λ manually may be beneficial. But this was not investigated in
this study to keep the whole pipeline as automatic as possible. It was assumed that this
way it would be easier to transfer the results from the BCI competition data set to the
recorded data set.

5.4 Offline Analysis of the Recorded Data Set

The methods tested on the BCI Competition IV-1 data set were then applied to the data
set acquired with the Unicorn Hybrid Black.

5.4.1 ERD/ERS Curves

Figures 5.7 and 5.8 show the ERD/ERS curves of two different recording sessions. The
plots show that the data was very noisy even though heavy smoothing was applied. It
can also be seen that the relative power of the curves was not in the same range with
the ideal curves in Figure 5.4. The curves from the BCI competition IV-1 data set would
decrease down until -25% to -50% but the lowest ERD for the recorded data set could be
seen in 5.7b with only a -20%.

Furthermore, there was hardly any period of time where the classes could be discrim-
inated from each other. Even after spatial filtering, all the the relative powers of each
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channel followed nearly the same course. C4 from Figure 5.7b showed that there was
a slightly larger ERD for left hand MI than right hand MI, which was in line with the
expectation from the homunculus. Also Figure 5.8b showed that either C3-Cz or C4-Cz
might be a good basis for discrimination. But these observations were not helpful when
it came to the actual classification of the signals.

The most curious part was that the pre-stimulus period showed some activity in the
-2 to 0 s range. For both recordings the relative band power started decreasing at around
-1 s (C3 and C4 in Figure 5.7b, C4 in Figure 5.8b) However, neither baseline correction
nor detrending helped with the issue. This led to the question whether there could be
an asynchrony in the cue markers. A possible reason for this phenomenon could, for
example, be that the markers were sent 1 second too late. Considering this possibility,
the ERD/ERS curves were plotted again. However, the results looked nearly the same
and for the sake of conciseness these plots were not included.

5.4.2 CSP

Bearing in mind that there seemed to be little valuable information in the ERD/ERS
curves, CSP was applied to the data set to see if it would produce any better results.
The resulting accuracy scores can be seen in Table 5.6.

Table 5.6: Broad-band CSP accuracies for the recorded data set
(Best in bold).

Session 1 Session 2 Session 3 Session 4

Participant 3 LDA 0.54 0.41 0.43 0.48
SVM 0.51 0.41 0.53 0.48
Logistic Regression 0.49 0.41 0.40 0.46

Participant 4 LDA 0.43 0.47 0.38 0.50
SVM 0.46 0.53 0.54 0.52
Logistic Regression 0.54 0.53 0.50 0.49

The results show accuracy scores around the chance level. Since it was previously
defined that an acceptable result would have at least 60% accuracy, none of the results can
be deemed acceptable. The pipeline was tested with different parameters for epoching,
baseline correction and classifiers. However, the results did not significantly deviate
from chance level. So, they were not included in this study for the sake of conciseness.

5.4.3 SFBCSP

As a last step, SFBCSP was applied to observe if it produced any better results. Table 5.7
shows these results.

It can be seen that SFBCSP was not useful in this case. There was a 5% increase
in accuracy for only one session-participant pair. If the classifiers would not perform
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Table 5.7: Comparison of SFBCSP and CSP accuracies for the recorded data set
(Best are in bold).

Session 1 Session 2 Session 3 Session 4

Participant 3 CSP 0.51 0.41 0.53 0.48
SFBCSP 0.40 0.52 0.41 0.53

Participant 4 CSP 0.46 0.53 0.54 0.52
SFBCSP 0.48 0.40 0.42 0.45

around chance level, this would be counted as a successful SFBCSP accuracy boost.
However this would not be a good conclusion in this case, as the increase might as
well have happened due to random effects and not due to proper functioning of the
algortihm.

As expected, these results showed that SFBCSP cannot boost CSP performance for the
recordings done with the Unicorn Hybrid Black. This is not surprising as CSP was not
producing good results to start with.
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Figure 5.4: ERD/ERS curves of participant E for different motor imagery tasks. Each
subplot shows a different channel on the sensorimotor cortex. (b) shows that spatial

filtering made it possible to separate different classes from each other. After CAR, ERDs
that lasted for ca. 3 s could be observed in channels C3 and C4, in line with the

expectations from the homunculus.
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Figure 5.5: ERD/ERS curves of participant B for different motor imagery tasks. Each
subplot shows a different channel on the sensorimotor cortex. It can be seen that a clear

cut separation between both classes was not possible as it was for participant E.
However, C3 and C4 in (b) show that a separation between both classes was possible for

the 2-5 s time period.
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Figure 5.6: Lasso coefficients of SFBCSP for the BCI Competition IV-1 data set.
Participants that achieved the best performance boost from SFBCSP are plotted on the
left side of the dashed line, whereas the participant with a drop in accuracy was plotted
on the right. It can be seen that for the participants with good performance, the feature

vector is rather non-sparse. Although SFBCSP looks for sparse feature vectors, the
current implementation seems to be working better for less sparse feature vectors.
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Figure 5.7: ERD/ERS curves of participant 3 from session 3 for different motor imagery
tasks. Each subplot shows a different channel on the sensorimotor cortex. It can be seen
that a clear cut separation between both classes was not possible. The only result in line
with the expectations came from C4 in (b). There was a clear left hand MI related ERD

between -1 and 2 s.
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Figure 5.8: ERD/ERS curves of participant 4 from session 2 for different motor imagery
tasks. Each subplot shows a different channel on the sensorimotor cortex. It can be seen
that the signals for different MI tasks could be theoretically separable by using Cz with

either C3 or C4. However it is very difficult to come up with a neurophysiological
explanation of the data.
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6 Discussion

This study dealt with building an EEG-based eye blink detection system with multiple
control signals, and the investigation whether this system could be used to extend a
MI-BCI using the Unicorn Hybrid Black. For the investigation of MI integration, first the
results of a publicly available data set (BCI Competition IV-1) were used. These results
showed that a combination of ERD/ERS curves, CSP and SFBCSP were very helpful for
classifying MI data. The same methods were then applied to the data set recorded with
the Unicorn Hybrid Black. The results showed that it was not possible to reproduce the
good classification results between different MI classes as it was the case for the publicly
available data set.

Bearing the results from chapter 5 in mind, in this chapter the scientific questions
posed in chapter 1 will be addressed one by one.

1. Can single eye blinks be detected using a single EEG channel? How does this system
perform?

It was shown that single eye blinks could be detected with a very high accuracy and
that the false detection rates were very low. The RTs for all conditions were around 1 s.
All these were achieved by using the activity of only one frontal channel.

These results meant that single eye blinks could be reliably detected in real-time using
a single EEG channel.

2. Can double eye blinks be detected using a single EEG channel? How does this system
perform?

After the eye blink detection system was extended to support a second control signal,
namely double blinking, the system was tested again using the same evaluation methods
used for the single blink detection case. RTs increased slighty compared to the single
blink detection case. This was because of the need to implement a waiting period for a
double blink to occur.

The RTs were under 2 s for both of the participants. Given that the participant specific
parameters were correctly set, the detection accuracies for both single and double blink
detections were above 75%.

In this case, the false detection rates were minimized to 0% for all rest periods. This
meant that the system would not act without voluntary input, i.e. blinks, from the user.
An even better estimate for this phenomenon came from the pause periods.

Until after the experiment was over, participants were not aware that their signals
from the pause periods would also be used to estimate false detection rates. This way
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they would not restrict themselves to be as still as possible like for the rest periods. And
that is why pause periods gave a better estimate to how the system would perform in a
real-life scenario. The false detection rates for these pauses were less than 5%.

Except for one condition, the correct detection accuracies of single blink detections
were slightly higher than double blink detections. This verified the assumption that
producing double blinks that would get detected by the system was more difficult than
producing single blinks. Nevertheless, all these results showed that the system could be
reliably used with both single and double voluntary blinks.

One last thing to mention is that, it was shown that only one channel was enough for
this eye blink detection system. This meant that the whole system can be made even
more compact and portable if only this one channel is used. This can be theoretically
possible by disassembling a relatively low-cost EEG system. An example of such a
system can be seen in Figure 6.1.

Source: https://www.unicorn-bi.com/product/unicorn-naked-bci/
Figure 6.1: Unicorn Naked BCI is an 8-channel EEG amplifier for BCI applications. It

comes without a cover, meaning that it could be possible to disassemble it to have only
one channel to be used for eye blink detection. This way, the system would be made as

compact and portable as possible for real-life applications.

3. Can the eye blink detection system be reliably used within only one session?

Both participants demonstrated that they could produce excellent results within only
one session. No extensive training or setup was needed to operate the system (although
it will be discussed in the next point that there was a learning effect).

Due to these reasons it can be concluded that the proposed system could be reliably
used as a first EEG-to-computer interface in order to, e.g., motivate participants in
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volunteering for BCI experiments. Seeing that there is a real-life use to the studied
systems, participates could be more willing to cooperate during experiments.

4. Does feedback influence the eye blink detection system?

Feedback did not have a significant effect on the RTs. But the accuracies got signif-
icantly better in the case of CF. In this case, participants could experience a concrete
reaction from the system, i.e. vibration of the motor or the blinking of the LED. It can
be assumed that this feedback gave them the confidence that they were able to produce
the correct control signals for the system.

The increased performance could also be due to a learning effect. One argument
could be that since the CF block was in the end of the experiment, participants already
familiarized themselves with the system, thus producing better results. In this case,
the improved performance of the system would be more about learned skills than the
feedback.

It is very difficult to discard this argument. However, the feedback given by participant
1 was valuable for this discussion. Without being explicitly asked or led to provide any
feedback, he said that the CF made a huge difference for him. He mentioned that by
seeing that his actions would get translated into real life controls, he could better adapt
the strength and frequency of his eye blinks. Comparing this with the other feedback
conditions he said that he could do this by learning with the help of the feedback.
Looking at his accuracy results for the CF condition, it can be seen that this learning
effect really played a role in producing better results.

Bearing this finding in mind, if the eye blink detection system was ever to be deployed
in real life, it would be worthwhile to provide users with some sort of real control
feedback to improve its overall performance.

5. Can the detected blinks be used as control signals for IoT (Internet of Things) devices?

It was shown that a basic UDP connection could be used to send detected eye blinks
as control signals to an ESP32. This allowed the control of the vibrotactile motor and
LED connected to the microcontroller.

This was done as a proof of concept for other types of IoT control. Since it was
shown that the eye blink detection system worked reliably on its own, connecting the
blink detections with any type of interface is rather a communication problem between
different devices.

In future research, the vibrotactile motor of the circuit could be replaced with, for
example, the vibrotactile motor of a smartphone. This way a patient with neurological
conditions could directly send signals to his/her caretaker’s smartphone in case help
was needed.

6. How do offline analysis methods perform on an "ideal" data set?
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A combination of ERD/ERS curves and filtering gave an insight to the data and
participant at hand. It was remarkable that just by looking at the ERD/ERS curves of
participant E, the participant’s high accuracy score could be anticipated.

In cases where the ERD/ERS curves were not as clean as for the participant E, the
curves still carried some information. It was demonstrated that better accuracy scores
could be achieved by adapting the epoching window to match the most discriminative
ERD/ERS region. Doing this for participant B resulted in an accuracy score increase of
17%. It also decreased the performance of participant G from 92% to 48%. This example
demonstrated the participant-specific dynamics of EEG data.

The performance of broad-band (4-40 Hz) CSP was then compared with SFBCSP, an
alternate approach that automatically finds participant-specific frequency sub-bands to
be used as CSP features for optimal performance. The implemented SFBCSP altered
slightly from the original work [31] but it still produced a boost in classification accuracy
for more than half of the participants. Although the computation time was significantly
higher for this approach, the classifier accuracies showed a significant improvement.

All in all, it was possible to classify different MI tasks using the methods investigated
in this study.

7. How do offline analysis methods perform on a data set recorded with the Unicorn Hybrid
Black?

The same methods were applied to a data set recorded with the Unicorn Hybrid Black,
an 8-channel wireless EEG system. Unfortunately the results did not look promising.
The ERD/ERS curves seemed to have carried only little information and neither CSP
nor SFBCSP performed above chance level for any of the recording sessions.

Bearing in mind that it was demonstrated on an ideal data set that the implementation
of the used methods were correct, the results can be explained in different ways.

First, the most obvious possible reason was that the data quality was not high enough.
It was shown that there was a significant line noise interference in the data. Even though
this noise was filtered out, it has to be kept in mind that there is no substitute for clean
data [43].

Unicorn Hybrid Black electrodes are very sensitive to noise. When someone does
even a tiniest movement close to the electrodes, the signal amplitude grows very large
and it takes a few seconds for it to settle again. Even though there was extra care given
to keeping the recording chamber free of any interferences, large scraps of data had to
be discarded during automatic epoch rejection because they were contaminated with
artifacts that could not be cleaned by filtering alone.

Another reason of the poor performance could be the low number of electrodes.
Even though it was shown that by using just two electrodes (C3 and C4), a single trial
classification accuracy of 80-95% could be achieved after six to ten sessions [51] [52] [32],
a large number of electrodes (e.g., 27) may be needed for CSP [34] which was not the
case for the Unicorn Hybrid Black with only eight channels.

Keeping in mind that the ERD/ERS curves not looking promising at all, it can be
assumed that there were other issues that have to be addressed in future work before
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deciding to completely switch the analysis method. These could range from problems
during data acquisition to suboptimal preprocessing steps.

Another possibility is that the participants were either BCI-illiterate or that they
had not attended enough recording sessions to produce good results. This possibility
could be addressed by recording from different participants or also by designing more
interactive recording paradigms to keep the participates engaged in the task.

As it can be seen, there are many possibilities why the MI classification did not
work as intended. Unfortunately based purely on the results of this study, it cannot be
concluded which ones of these were the sources of this issue. However there are many
possible branches to explore in future studies.

Summarized, this study could not provide acceptable MI classification performance
using the Unicorn Hybrid Black. However, based purely on the findings of this study, it
cannot be concluded that this will always be the case.

8. Can an online MI-BCI be realized with the Unicorn Hybrid Black?

Since offline analysis of the recorded data set did not produce acceptable results, this
question had to be left unanswered in this study. Future research may show that it can
be indeed the case that Unicorn Hybrid Black can be used for an online MI-BCI.

9. Can the eye blink detection system be extended to support MI?

Although a MI-BCI could not be built using the Unicorn Hybrid Black, this question
can be addressed in a different way. As briefly discussed before, the eye blink detection
system can be used not only to allow more degrees of freedom to an MI-BCI, but also to
motivate participants. Both participants that attended the MI data recording part of this
study made it very clear that they stopped enjoying the recording session directly after
the first session. This was both because of the mental work required to sit through the
whole experiment, minimizing movements and distractions and also because it was not
entertaining to sit through a very long experiment not receiving any feedback.

However, data acquisition is one of the most important steps of building a MI-BCI.
This means that keeping the participants engaged in the task is very crucial and that it
indirectly aids an MI-BCI. Here, the eye blink detection may come into play.

It is possible to design a recording paradigm where participants have to alternatingly
do pure MI in one block and CF eye blink detection in another. This could solve the
problem of having to go through a long recording where the participants do not enjoy
themselves. It could also potentially increase the connection between voluntary eye
blinks and MI in the participant’s mind because he/she would be doing these tasks
consecutively. This might help with participants getting more familiar with a system
that combines these two paradigms. So that if such a system actually gets built, the
participants would already have most of the necessary training to operate it.

Of course this idea is rather arbitrary and was proposed more as a fruit for thought.
Nevertheless, it might be very a interesting idea for future research.

55



6 Discussion

Summarized, it can be said that the current study could not come up with a lot of
findings that would support the hypothesis that an MI-BCI can be aided by an eye blink
detection system. This however does not mean that it is totally unfeasible. More future
research is needed to study this question in more depth.
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7 Conclusion

In this study an eye blink detection system was built using only one frontal EEG
channel. This system was evaluated based on it reaction time, detection accuracy and
false detection rates. It was shown that this system could support one or two control
signals. These control signals were then connected with the ESP32 microcontroller to
allow wireless communication with its peripherals. Thus participants could control a
vibrotactile motor and an LED within one recording session using their blinks. This was
designed as a proof of concept for EEG-based IoT control.

After successfully building the eye blink detection system, the possibility of extending
an MI-BCI with it was investigated. This investigation was valuable, as MI-BCI usually
takes long training sessions to be used effectively. However, extending an MI-BCI with a
system that participants can effectively use within only one session would overcome the
need for long waits to operate an EEG based BCI.

For this purpose, the publicly available BCI Competition IV-1 MI data set provided by
the Berlin BCI group was used to implement and test different offline analysis methods
to classify MI data. First ERD/ERS curves were plotted for different participants to get
a sense of the data at hand. This also made it possible to re-examine previous findings
like the cortical homunculus and motor imagery coupled brain activities like ERD and
ERS. By applying CSP and SFBCSP test set accuracies of above 90% could be achieved.

Then MI data was recorded using a wireless 8-channel dry electrode EEG system
following the Graz paradigm. Two participants were recorded for four consecutive days.
The offline analysis methods applied to the BCI competition data set were then applied
to this recorded data set to see if the Unicorn Hybrid Black EEG system could be used
for an MI-BCI.

It was not possible to achieve the same good results on the recorded data set as
the ones achieved for the BCI competition data set. This prevented a Unicorn Hybrid
Black-based online MI-BCI to be built for this study. That is why it could not be directly
studied whether an MI-BCI can be extended with eye blink control signals.

However, the findings could still be used to assess this possibility. It was discussed
that by providing the participants with concrete results, like controlling peripherals of a
microcontroller with eye blinks detected using EEG, their engagement could be increased.
This could be best observed by comparing the moods of the first two participants who
attended the eye blink detection experiment with the two other participants who
recorded MI data. Clearly the participants who had the feeling that they were in
control by using the eye blink detection system were more enthusiastic for attending
more experiments. This shows that the sense of agency can help with participants’
attentiveness during experiments.
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7 Conclusion

Following this idea further, it was proposed that a recording paradigm could be built
that mixes both MI and eye blink detection to keep the participants engaged during
recording sessions. This way it could be possible to link the use of eye blink detection
and MI-BCI in participants’ minds early on during necessary recording sessions. By
keeping them engaged in the tasks, better results could be obtained, even when using a
dry electrode EEG system with a low number of electrodes, like the Unicorn Hybrid
Black. Of course, this is merely a speculation. But the idea is exciting enough to be
studied in future research.

To conclude, it can be said that the current study produced valuable results for future
research. It showed that voluntary eye blinks detected from a single EEG channel
can reliably be used as control outputs within only one session. It further showed
that these outputs can be used in a wireless environment to control external devices.
It was demonstrated that providing participants with real control feedback achieved
better performances while operating a real time system and that there was a learning
procedure during this feedback period. Furthermore, it was shown that wireless dry
electrode systems may not work as intended out of the box and therefore special care
has to be given during recording sessions to acquire good quality data.

Hopefully all these results will be beneficial for future research aiming to combine
electrooculography with electroencephalography.
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