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1 Introduction

There are metrics researchers use to benchmark elec-
troencephalography (EEG) signal qualities but none
of them are standardized or widely accepted, "there
currently are no community-accepted or standard met-
rics for EEG signal quality as observed within real-
world domains" [1]. One study even mentions a med-
ical technical assistant visually inspecting the EEGs
of subjects using a "skill-based state-of-the-art proce-
dure"[2] as a reliable way of assessing signal qualities.
Although visual inspection is the most widely used
technique for this reason, these statements show the
need for standardizing and automating the signal qual-
ity assessment of EEG signals and recordings. This is a
serious concern, because not being able to distinguish
between "good" and "bad" EEG signals is also a cen-
tral problem for many brain-computer interface (BCI)
applications. Arguably, one of the biggest benefits of
such metrics would be to allow researchers to check
the signal quality of a recording before even processing
it. Being able to pre-check the signal quality prevents
possible backtracking after processing data and seeing
that the data is not good enough for a given applica-
tion. Another huge benefit of such metrics would be
the ability to compare different EEG systems accord-
ing to their signal qualities. This could be particularly
useful when deciding which system to use for a given
application or when investing in new EEG systems. In
this report, I will be presenting how metrics acquired
from simple measurements such as correlation matri-
ces and relative band powers can give insight into EEG
signal qualities.

2 Equipment

The two EEG systems studied in this project are Uni-
corn Hybrid Black by g.tec neurotechnology GmbH
and Smarting 24 by mBrainTrain. Unicorn Hybrid
Black (UHB) is a consumer-grade wireless EEG sys-
tem that has 8 conductive rubber electrodes (Fz, C3,

Cz, C4, Pz, PO7, Oz, PO8) with 24 bits resolution and
input sensitivity of ± 750 mV that can be used for both
dry or wet (with conductive gel) measurements. It has
a Bluetooth 2.1 interface and a sampling rate of 250Hz
per channel. It also has a 3-axis (x, y, z) accelerometer
and a gyroscope to detect head movements.
On the other hand, Smarting 24 is also a wireless

EEG system that has 24 channels as its name suggests
(Fp1, Fp2, Fz, F7, F8, FC1, FC2, Cz, C3, C4, T7, T8,
CPz, CP1, CP2, CP5, CP6, M1, M2, Pz, P3, P4, O1,
O2). They are wet electrodes of also 24 bits resolution.
Smarting has a better input sensitivity than UHB with
± 100mV. It also has a Bluetooth 2.1 interface that sup-
ports EDR (Enhanced Data Rate), which is capable of
transmitting data 2 or 3 times faster than previous ver-
sions of Bluetooth. One other perk of Smarting is that
it has two recording modes with sampling frequencies
250 Hz and 500 Hz for the user to choose freely.
Most EEG systems have a built-in impedance mea-

suring which allows researchers to use it as the pri-
mary way of assessing signal quality before begin-
ning to record data. But not all systems have quantifi-
able impedance measuring. For example, the Unicorn
Recorder app that allows to visualize and record data
with UHB, has a built-in signal quality checker GUI
(graphical user interface) but it only has twomeasures:
good and bad. Furthermore, these are not calculated
using the impedance values but rather using the stan-
dard deviation and the bandpower mean difference of
the signal. These are also non-quantified measures, so
the user is only left with the GUI which can be seen on
the left side of Figure 1. This is not the case for Smart-
ing Streamer though. This app shows quantifiable
impedance values which help with applying the con-
ductive gel to the electrodes and also indicates a good
signal quality once the impedance values decrease.
After this brief introduction to these two systems,

one would assume that Smarting 24 is a better system
than UHB. One of the main goals of this project is to
compute and compare different metrics to validate this
assumption. If the results and the methods to compute
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them are robust enough, this project can be generalized
to other systems as well.

Figure 1 Left: Signal quality GUI of Unicorn Recorder,
Right: Signal quality GUI of Smarting Streamer

3 Recordings

Previous work has shown that three simple measure-
ments can helpwith checking and comparing the signal
qualities of different EEG systems. [2] In the begin-
ning, the participant is resting with eyes closed, then
with eyes open and lastly performing a cognitively
challenging task. First of all it is worthwhile to em-
phasize that it actually is very intuitive to use resting
measurements to check the signal quality. While the
participants are resting electrical fluctuations in the
range 8-13 Hz called the alpha waves can be measured
[3] and it is one of the most commonly used methods
among researchers [2]. Normally this process is not
automated and the researcher asks the participant to
close his/her eyes and monitors the signal for alpha
waves. But this is not always easy to detect because
for example, some participants cannot produce strong
alpha waves or maybe the researcher simply does not
have enough experience to detect alpha waves. Sec-
ondly, one has to acknowledge that in the ideal case
most probably performance-based signal quality will
most be the most accurate way of comparing different
systems. But this method also has its shortcomings.
The participant may not be "BCI literate" to begin
with. Also, making the participant perform a BCI task
to check if his/her signal is good enough to perform
a BCI task is counter-intuitive. It would have been
much better to use simpler and faster measurements to
come to the same solutions. Which leads us back to
the starting point with the resting calibration measure-
ments.

The mentioned work suggests that devices with
good signal quality should be able to pick up "a signifi-
cant Berger effect betweenmeasurementswith the eyes

open and those with the eyes closed"[2]. The Berger
effect [4] states that the alpha band power should de-
crease once the participants open their eyes after rest-
ing with eyes closed. When it comes to the cognitive
load tasks, although this work assumes that devices
with good signal quality should show "a significant in-
crease in the frontal theta power when comparing the
easy andmore demanding cognitive tasks" [2] this was
not directly tested in this project. Instead, for the sake
of simplicity, it was assumed that good systems should
be able to pick up a relatively higher theta power than
worse systems. That is why only one cognitive load
task was used for all the measurements: multiplying
two two digit numbers together in mind.

In total, there were six participants whose data was
recorded in this project. The first three participants’ (1,
2, and 3) data was recorded with both of the systems,
UHB and Smarting 24. Whereas, rest of the partici-
pants’ (4, 5 and 6) data was recorded using only UHB.
In the recordings of participants 1 and 2, all 24 elec-
trodes of Smarting 24 were used but in the recording
of participant 3 only 16 electrodes were used. Figure
2 shows the topography maps of the used electrodes in
both systems. Red dots represent the 8 electrodes not
used in the recording of participant 3. Furthermore
all participants’ UHB recordings were made using the
Unicorn Recorder app, except for participant 2.

Figure 2Left: UHB electrodes, Right: Smarting electrodes
where the red dots represent the 8 electrodes not used in the
recording of participant 3

To visualize the data in the Unicorn Recorder app,
one has to pick a pre-defined band pass filter and a
notch filter. The recordings can also be done using
this app but unfortunately I was not aware that the fil-
tering to visualize the data was also performed on the
recording itself until all five participants’ recordings
were done. After I figured this out, I set up the Lab
Streaming Layer (LSL) to record the data from partic-
ipant 2 without any filtering. It was a setback that five
participants’ data was pre-filtered because it made it
impossible to compare unfiltered signals. That is why
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only the data from participant 2 was used for raw UHB
signals.

4 Pipeline

4.1 Filtering

After the data is recorded, the first thing to do is to crop
out the first and last few seconds of it, as these parts
do not capture neurophysiological phenomena. The
first few second can be thought as the time span that is
needed for the subject to focus on the task after the start
signal and the last few seconds as the time that passes
by until the researcher can stop the recording after
desired amount of data is gathered. In the ideal case,
the time points of where to crop the data can be set with
a marker stream. Alternatively it can be approximately
guessed from the time series by visual inspection. In
this project, there was no marker stream and that is
why each recording was cropped manually after visual
inspection. But the problem with this method is that
the electrical line noise (50 Hz in Germany) and its
harmonics (100 Hz, 150 Hz, 200 Hz, ...) overlay with
the EEG signal and it is not possible to determine the
best time points to crop the data. That is why the actual
first step is to filter out these frequencies with a notch
filter. The results of such a filtering can be seen in
Figure 3.

Figure 3 Time domain signals of eyes closed resting mea-
surement (#1) of participant 1 before and after notch filter-
ing

4.2 Computing Correlation Matrices

After this initial cleanup, the correlation matrix of the
channels is computed for each measurement. This
is a (num_channels) x (num_channels) matrix which
captures the Pearson correlations of each electrode
with the others. It was assumed that neighboring EEG
sensors (electrodes) pick up approximately the same
signal, just likemicrophones placed in a crowded room
full of chatter. So, even though the ground truth of
what the actual signals picked up from the electrodes
should look like still remains a secret, it is fair to expect

that the computed correlation matrices should show
high correlations with a slight gradient representing
the distance of the electrodes from each other. The
problem at this point is that not all the recordings were
done in the same manner as explained before. UHB
measurements of the participants 1, 3, 4, and 5 were
already notch filtered at 50Hz and band-pass filtered at
0.1-60 Hz in some cases and 0.5-60 Hz in others. But
the Smartingmeasurementswere done through theLab
Streaming Layer (LSL) which returned unfiltered data.
That is why the color-encoded correlation matrices in
Figure 4 belong to Smarting measurements, to show
the effect of band-pass filtering on the these matrices.
The color-coded correlation matrices provide a vi-

sual intuition to how different channels are correlated
with each other and also which channels might be bad.
Figure 4 shows the correlation matrices of eyes closed
resting measurement (#1-5) of participant 2 before and
after band-pass filtering. The correlation of electrode
P3 with the other electrodes is very low in both cases.
This might suggest that P3 is a bad channel. To con-
firm this suspicion, one might take a look at the time
domain signal of this electrode. As it can be seen in
Figure 5, P3 does not deviate from its baseline like
the other channels do. In hindsight, it is not surpris-
ing because the impedance value of this electrode was
constantly higher than 40 kOhm while making these
recordings.

Figure 4 Color-coded correlation matrices of eyes closed
resting measurements (#1-5) of participant 2 before and
after band pass filtering

This example shows that the correlation matrices
do not only give a visual intuition but it might also
help with detecting bad channels. I have also experi-
mented with an automated process to mark channels as
bad if the absolute value of channel correlation means
were lower than a predefined threshold. However, this
process was not robust enough to present in this re-
port. Nearly in all cases electrodes on the pre-frontal
cortex were marked as bad channels, most probably
due to eye artifacts (even though the participants’ eyes
were closed in the majority of measurements). If this
is really the case, one possible solution would be to
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Figure 5 Time domain signals of eyes closed resting mea-
surement (#2) of participant 2 with the bad channel P3

filter out eye artifacts, for example with Independent
Component Analysis (ICA), and then compute the cor-
relation matrices again from the cleaned up data. This
was not performed in this project but I believe that
with further adjustments similar to this, correlation
matrices can be easily used to automatically detect
bad channels.

As mentioned, since the UHB recordings could not
be converted back to raw, unfiltered signals any more,
all UHB and Smarting recordings were band pass fil-
tered with the cutoff frequencies of 2 Hz and 40 Hz.
Based on the following quote this cutoff frequency
of 2 Hz is actually not desired: "When it comes to
high-pass filtering, using corner frequencies above 0.1
Hz were found to be generate a systematic bias easily
leading to misinterpretations of neural activity." [5]
But since the time accuracy of the signals do not play
a role in these calibration recordings, it was desirable
to filter out low frequency drifts in data, like breathing
of the subjects. The effect of this filtering can be seen
in the middle plot of Figure 6.
After this filtering the correlation matrices of UHB

and Smarting measurements could be compared with
each other. To have a common ground, only the elec-
trodes present in both systems were used to compute
the correlation matrices, these were: Fz, C3, Cz, C4,
Pz. Also, the component wise mean values of all the
correlation matrices for the same type of measure-
ment (e.g., cognitive load) were computed for each
participant. The results can be seen in Figure 7. Curi-
ously enough, the UHB correlation matrices are much
darker than the Smarting matrices. This could be due
to a better separation of source signals by the Smarting
device. Since Fz is the electrode highly uncorrelated
with the rest of the electrodes, it could be that the
brighter colors in Smarting matrices do not necessar-

Figure 6 Top: Time domain signals of eyes closed resting
measurement (#2) of participant 1 where the low frequency
drifts because of breathing are clearly visible, Middle: Time
domain signals of eyes closed resting measurement (#2)
of participant 1 after band pass filtering (2-40 Hz) where
the low frequency drifts were filtered out, Bottom: Time
domain signals of eyes closed resting measurement (#2) of
participant 1 after band pass filtering (8-12 Hz) where the
alpha waves are clearly visible

ily mean worse signal quality, because as mentioned
before, frontal channels were rather sensitive in these
matrices.
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Figure 7 Averaged correlation matrices of each type of
measurement for each participant, Top row: UHB, Bottom
row: Smarting

4.3 Relative Band Power

Finally the relative band powers were computed. This
was done by first normalizing the data to values be-
tween 0 and 1, since the scaling of each recording was
different. Normalized data was then used to compute
the power spectral density (PSD) of the signal using
Welch’s method [6]. All the computed PSDs of dif-
ferent channels were then averaged. With the help
of logical indexing, the desired bands were isolated
and the area under the curve was approximated using
Simpson’s method. The computed value was the abso-
lute band power. The total band power was computed
analogously. The relative band power for a given band
was just the ratio between these two values. As the
scalings were off in some measurements, the relative
band power was a more robust result. The described
PSD plot can be seen in Figure 8.

Figure 8 Power spectral density of eyes closed resting mea-
surement (#2) of participant 5, blue area: alpha band (8-12
Hz)

Once relative band powers were computed for each
measurement, it was time to test whether there would
be any differences between the two systems. Figure 9

shows this comparison for the alpha band andFigure 10
show for the theta band. It is comforting to see that eyes
closed resting measurements with Smarting are more
robust with less variance than UHB. Furthermore, it
seems like the Berger effect is more prominent with
Smarting measurements as there is no overlap between
eyes closed and eyes open measurements. Looking at
the relative theta band powers, it looks like Smarting
provided better results also in this case. But one thing
to consider is that the sample sizes differ significantly
from measurement to measurement. Although the re-
sults look promising enough, it would be exciting to
perform statistical tests on this data once there aremore
samples gathered.

Figure 9 Left: Distribution of relative alpha band powers
of resting measurements for UHB and Smarting, Right:
Mean, standard deviation and sample size of each type of
measurement

Figure 10 Left: Distribution of relative theta band powers
of cognitive load measurements for UHB and Smarting,
Right: Mean, standard deviation and sample size of each
type of measurement

5 Conclusion

The first thing this project has shown is that matrices
of correlations between the electrodes provide a vi-
sual intuition to how the data behaves and that they
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might be efficient tools to check for bad channels in
the recorded data. Since the correlation matrices look
nearly the same for same kinds of measurements in-
dependent from the participant, it might be of good
practice to compare correlation matrices of new data
with older ones. This might show if the new recording
is statistically similar to previous data. Also this would
be a much simpler feature to use for statistical tests, es-
pecially when working in higher dimensions like with
EEG data. Another finding of this project came from
relative band powers. Relative alpha and theta band
powers computed from simple measurements such as
resting states or multiplying two two digit numbers to-
gether provided promising results to compare different
systems with each other. Although the scope of this
project was rather small, same measurements can be
repeated in future studies with different systems and
participants, also building a database for more accu-
rate results in the meantime. I believe that such simple
computations and statistical testing are the easiest and
most reliable way of assessing signal qualities of EEG
systems, until we discover the "ground truth" behind
brain signals.
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