
Python for Engineering Data Analysis - from Machine Learning to Visualization
Technical University of Munich

Clustering Tweets, Users and Their Following Lists in A
Network Graph Based on a Specific Hashtag

Brigitta Jesica Kartono [03692769]1,�, Karahan Yilmazer [03717524]1,�

1Department of Electrical and Computer Engineering, Technical University of Munich (TUM), Arcisstr. 21, 80333
Munich, Germany
� jesica.kartono@tum.de, karahan.yilmazer@tum.de
March 21, 2021

1 Introduction

Twitter is one of the most popular social media plat-
forms and hence a strategic source for data anal-
ysis. In this project the authors aim to research
whether there is a relation between the cluster a
user belongs to in a network graph and the content
of this user’s tweet based on a hashtag.

To reach a conclusion, 1000 tweets with a partic-
ular hashtag, #cryptocurrency in this case, the user-
names of the users that posted these tweets, and
these users’ following lists were streamed.

For visualization purposes a network graph of ev-
ery user’s following list was created. This graph al-
lowed to see if the studied users followed mutual
accounts and whether they followed each other as a
community that shares common interests. The 1000
tweets were also clustered using k-means clustering
and these clusters were overlayed on the network
graph to observe if there is any correlation between
the user connections and their sentiment.

2 Theory

I. NETWORK GRAPH
A network is a set of objects (called nodes or ver-

tices) that are connected together. The connections
between the nodes are called edges or links. [1]
A network can be directed or undirected (bidirec-
tional). What determines this property is whether
the edges have a preferred direction. In this case
the nodes are the Twitter users and the edges are
their following relations amongst each other. The
network is directed since a user following another
doesn’t necessarily mean that the followed user also
follows its follower.

Trivially, the interconnections of the nodes are
based on the users’ followings and it is logical to as-
sume that some prominent users would have more
connections than the average. The technical term
to define these prominent users are "hubs" which
are highly connected nodes. [2] These hubs should

somehow correspond to the hashtag #cryptocur-
rency, as that is a determining factor for this project.

II. K-MEANS CLUSTERING
Clustering is the task of dividing the population or

data points into a number of groups such that data
points in the same groups are more similar to other
data points in the same group and dissimilar to the
data points in other groups. [3]

K-means algorithm partitions n observations into
k clusters where each observation belongs to the
cluster with the nearest mean serving as a prototype
of the cluster. [3]

There are various methods of clustering but for
this project k-means clustering was picked, since
it is one of the simplest unsupervised learning al-
gorithms. Moreover it was important to use an un-
supervised learning algorithm, because the data la-
bels were not known beforehand.

3 Experimental Setup

I. DATA MINING AND DATA SORTING
The first step of data mining was to collect the

tweets using the Python library Tweepy [4] to ac-
cess Twitter Stream API, which requires a Twitter
Developer Account. Twitter API allows a developer
to stream Tweets in real time. [5] For this project, au-
thors utilized a standard API, which is free of charge,
but has limitations for the amount of data obtained:
it allowed only 300 followers to be collected every 15
minutes.

First, 1000 tweets which contained the hashtag
#cryptocurrency were streamed and saved locally
as a TXT file. The information obtained from this
stream contained a lot of unnecessary details, which
were filtered out in the next step. At this point the
tweets were saved as a JSON object to make data
extraction easier. JSON objects are written in key/-
value pairs, hence the values in a JSON object can
be accessed relatively easily. [6]

After 1000 Tweets were obtained, the full text of
each tweet, the username and the user ID of the

1



user that posted the tweet were extracted to be
stored separately in a CSV file. This was done by
parsing over JSON objects by their keys to obtain
the values needed. Saving the data as a CSV file
was preferred for easier processing with Pandas, a
data manipulation and analysis software library. [7]

The Twitter API was then used again to obtain
each user’s following list. Each list was stored locally
as a CSV file under the name "followinglistx.csv",
where x denotes a number between 0-999. The fol-
lowing list of the user who tweeted the first tweet
would have the file name "followinglist0.csv". To
avoid unnecessary repetitions, a conditional state-
ment was implemented: if the following list was al-
ready obtained for a particular username, then the
list was not fetched a second time thus leaving it
empty. This was done because it does not make a
difference for the network graph in either case, as
the graph also prevents repetitions to maintain ob-
jectivity.

II. PREPROCESSING AND CLUSTERING
Once the data had been fetched and stored, it

was ready to be processed, making the next step
the clustering of the tweets and thus the users that
posted those tweets using the k-means clustering
method. Before starting with the actual clustering,
the tweets had to be preprocessed for better perfor-
mance.

The preprocessing mainly consisted of cleaning
up the tweets. All letters were converted to lower-
case so that capital letters didn’t play a role in the
clustering. Line breaks, multiple spaces, mentions,
hashtags, retweets, URLs, emojis and special char-
acters were removed.

After this basic step, stopwords were discarded.
Stopwords are commonly used words whose pres-
ence in a sentence has less weight compared to
other words. They include words like ‘and’, ‘or’, ‘has’
etc. [8] Then the tweets were tokenized, meaning
that the strings were split into a list of tokens (mostly
words in this case), and lemmatized, meaning that
the words were reduced to their root form. For these
steps the Python library NLTK was used. The Natu-
ral Language Toolkit (NLTK) is a Python package for
natural language processing. [9]

All the above mentioned preprocessing steps are
fundamental for efficient language processing, since
they greatly improve the performance of the cluster-
ing algorithm.

The preprocessed data was now ready for further
processing. To get a general idea of the data, a word

cloud was generated out of the tokenized tweets us-
ing the WordCloud library [10]. Since every tweet
had the hashtag #cryptocurrency, it was filtered out
of the word cloud. The result of this step can be
seen in Figure 1.

Figure 1 Word cloud out of the fetched tweets

The next step was to gather keywords for the
topic. For this purpose an online glossary [11] was
used and the keywords taken from the glossary
were stored in a string variable. To have a mea-
sure of relevance to the topic, the Jaccard similarity
was used. The Jaccard index, also known as the
Jaccard similarity coefficient, is a statistic used in
understanding the similarities between sample sets.
[12] The compared sample sets in this case were
the tweets and the string involving all the keywords.

Further features for clustering were obtained by
using the TextBlob library, a Python library for pro-
cessing textual data. It provides a simple API
to dive into common natural language processing
(NLP) tasks such as part-of-speech tagging, noun
phrase extraction, sentiment analysis, classification
and more. [13] For simple sentiment analysis pur-
poses two main features were extracted from each
tweet: subjectivity and polarity. Both of these prop-
erties provide scores to explain how subjective/ob-
jective or negative/positive the given text is. The
subjectivity score ranges from 0 to 1 with 0 being
the objective and 1 being the subjective end. For an
easier understanding the polarity scores were fur-
ther categorized into three groups: negative (polar-
ity < 0), neutral (polarity = 0) and positive (polarity >
0).

To find an optimal k-value for the k-means clus-
tering the elbow method was used. In cluster anal-
ysis, the elbow method is a heuristic used in deter-
mining the number of clusters in a data set. The
method plots the explained variation as a function of
the number of clusters, and picks the elbow of the
curve as the number of clusters to use. [14]

2



As can be seen in Figure 2, the number of clus-
ters, so the k-value, is on the x-axis whereas the
Within-Cluster Sums of Squares (WCSS) is on the
y-axis, where WCSS serves as the cost function.
Examining the graph, a good pick for the k-value
was 3, meaning that the tweets were going to be
separated into three clusters.

2 4 6 8 10
Number of Clusters

20

40

60

80

100

120

140

160

W
CS

S

Figure 2 Elbow Method to Determine The Optimal k-
Value

At last, the tweets could be clustered based on
the three extracted features: Jaccard similarity in-
dex, subjectivity and objectivity. To fit the data with
k-means clustering, Scikit-Learn library [15] was
used. The results of the clustering can be seen
in Figure 3. The computed cluster numbers were
stored in the CSV file containing the fetched data to
be later used in the network graph.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Polarity

0.0

0.2

0.4

0.6

0.8

1.0

Su
bj

ec
tiv

ity

Cluster 1
Cluster 2
Cluster 3
Centroids

Figure 3 k-Means Clustering on the Fetched Tweets

II. CREATING THE NETWORK GRAPH
Creating the network graph required the Python li-

brary NetworkX, a Python package for the creation,

manipulation, and study of the structure, dynamics,
and functions of complex networks. [16]. For each
following list, first a node was created for the follow-
ing list’s owner, and then an edge was created for
each of the users in the following list. The created
network was a directed network with the direction
being from the follower to the followed. Some con-
ditional statements were added to make sure that
when a username was encountered again, the old
node was expanded instead of making a new node.

Each time a new graph was created from a follow-
ing list, it was "merged" with the graph composed of
previous lists. Hence the complete graph was built
iteration after iteration by adding each new graph to
the rest.

As the graph was very massive in size, Gephi,
a visualization and network analysis software [17],
was used. NetworkX itself has a draw function
which draws graph directly into a matplotlib window,
as well as functions to do graph clustering or to set
node sizes. However, for big scale graphs this ap-
proach is very time consuming. It is also not possi-
ble to analyze and interact with the graph on the cre-
ated file post-creation through the NetworkX draw
function. Due to all these reasons, Gephi was used,
as mentioned before.

For analysis and double checking reasons, a func-
tion to check the prominence of users was also im-
plemented. This function counted the number of
times a user was followed throughout the 1000 fol-
lowing lists, and also returned a list with the most fol-
lowed users among the network. Again, repetitions
were discouraged as the function checked if two fol-
lowing lists belong to one username, and thus went
through it only once instead of multiple times.

III. NETWORK ANALYSIS IN GEPHI
At first sight, the imported graph to Gephi was

completely messy. The first step to improve the vis-
ibility was to apply the Force Atlas 2 layout. This
layout is geared for large networks. It allows a rig-
orous interpretation of the graph with the fewest bi-
ases possible by focusing on quality, and offers a
good readability. [18] The scaling was set to 4.0,
which determines distance between nodes.

The next step was to categorize the clusters by
colors. This was done by running one of the built-
in filters from Gephi, namely modularity. Modularity
is a quality index for clustering. [19] This algorithm
looks for nodes that are more densely connected to
each other than to the rest of the network. Modular-
ity resolution was set to 0.5 since values lower than

3



1.0 get more communities. The computed modular-
ity scores were then used color the clusters.

To better visualize the importance of a node,
the node size was set according to how prominent
that user was in the network. This was accom-
plished by running the eigenvector centrality filter
from Gephi. This algorithm measures the impor-
tance of a node by the level of influence it has in
the network. The calculated eigenvector centrality
scores ranging from a minimum size of 10 to a max-
imum size of 150 were used for the ranking size
of the nodes. Simply put, this process makes the
prominent nodes larger than the rest.

Lastly, another built-in function to prevent overlap
of the nodes was used, which allowed to decide how
much of the overlapping to handle without disturbing
the graph’s visual cohesion.

After all these steps, the graph had nodes whose
sizes were proportional to their prominence, and
nodes were categorized by colors into different clus-
ters, as it can be seen from Figure 4.

Figure 4 Network Graph with Modularity Clustering

IV. OVERLAYING THE TWEET CLUSTERING
WITH THE NETWORK GRAPH

As the last step, clusters acquired with k-means
clustering on the tweets could be imported to the
network data sheet in Gephi. This allowed coloring
the nodes based on these three clusters and an ex-
tra "cluster" for the initial 1000 users the tweets were
fetched from. The results of this step can be seen in
Figure 5.

Figure 5 Network Graph with Tweet Clustering

Clustering the tweets only clustered the 1000
users that posted those tweets. This was not
enough for visualization purposes since the rest
of the users in the network graph, from whom no
tweets were fetched, weren’t assigned to any clus-
ters. To assign these users to one of the three clus-
ters a straightforward solution was implemented: as-
signing the followed users to the clusters of their re-
spective follower. This approach helped with the vi-
sualization of the network graph to achieve the look
one might see in Figure 5.

4 Results

As mentioned in the introduction, this project aimed
to see if there is a relation between the cluster a
user belongs to and the content of this user’s tweet
based on a hashtag. Since the chosen hashtag
was #cryptocurrency, the created word cloud had
to reflect the topic. As it can be seen in Figure
1, even though only a very small subset of all the
tweets with the #cryptocurrency hashtag were ana-
lyzed, the word cloud gives a great overview of the
topic. Being the first cryptocurrency created, bitcoin
and its abbreviation "btc" are the most commonly
used words, showing that it still protects its popular-
ity even after the rise of different cryptocurrencies.
Having a very central meaning for cryptocurrency,
"blockchain" came second. Other cryptocurrencies
such as "ethereum" and "dogecoin" with their recent

4



popularity can also be seen to be of importance for
the chosen hashtag.

As it can be seen in Figure 3, the tweets in clus-
ter 3 are strictly positive with moderate subjectiv-
ity. The more objective tweets belong to cluster 1
with no apparent extremes when it comes to polar-
ity. The tweets in cluster 2 include rather subjective
tweets with less positive sentiment. One has to bear
in mind that the Jaccard similarity index was also a
feature and even though it doesn’t have a dedicated
axis in the 2-dimensional plot, it is embedded in the
distribution and clustering of the data points.

With 212927 nodes and 296044 edges, the net-
work graph gives important insights to the intrinsic
dynamics of the users. Although it was decided be-
fore starting with the project that the main clustering
method for the network graph to be the language
processing of the tweets, modularity of the nodes
also served as a great way of determining local hubs
and clusters. Furthermore the eigenvector centrality
ranking and the written function to find the most fol-
lowed users showed that the most prominent users
were Elon Musk, Coinbase, Binance and CoinDesk.

Coming to the tweet clustering, the results were
surprising since the authors expected more global
localization of the clusters than the seen results.
Looking at Figure 5, it can be said that the biggest
cluster, being the blue cluster which correspond to
cluster 1 from Figure 3, is rather focused on the cen-
ter and not spatially distributed whereas the other
clusters (red being cluster 2 and green being 3 from
Figure 3) are on the peripheries and mostly sep-
arated from each other. Furthermore the results
demonstrate local hubs and clusters to be existent
and that the network is highly interconnected, as ex-
pected.

5 Conclusions

This project demonstrated the relation between the
user and tweet clusters. Although the results were
rather surprising, two possible explanations for the
rather weak localization of the clusters in the global
scale could be that either the data wasn’t large
enough to reach reasonable conclusions or that the
performance of the clustering algorithm was low. It
would be very interesting to see the results of this
project being reproduced with bigger data and more
accurate language processing done for different top-
ics and social networks.

References
[1] D. Q. Nykamp, “Network definition,” https://mathinsight.

org/definition/network, accessed: 2020-03-17.

[2] A.-L. Barabási, Network Science, 2016.

[3] S. Priy, “Clustering in machine learning,” https://www.
geeksforgeeks.org/clustering-in-machine-learning/#:
~:text=Clustering%20is%20the%20task%20of,data%
20points%20in%20other%20groups., 2020.

[4] J. Roesslein, “Tweepy: Twitter for python!”
https://github.com/tweepy/tweepy, 2020.

[5] The Twitter API developer team, “Twitter api,”
https://developer.twitter.com/en/docs/twitter-api, ac-
cessed: 2020-03-07.

[6] C. Manu, “A script to download all of a user’s
tweets into json,” https://gist.github.com/manuchandel/
bc8a6ca4b1527b7594945e5091013905, 2016, ac-
cessed: 2020-03-07.

[7] The pandas development team, “Pandas,” Feb. 2020. [On-
line]. Available: https://doi.org/10.5281/zenodo.3509134

[8] A. Kibet, “Tweets classification and clus-
tering in python.” https://medium.com/swlh/
tweets-classification-and-clustering-in-python-b107be1ba7c7,
2020, accessed: 2020-03-17.

[9] E. K. Steven Bird, Edward Loper, Natural Language Pro-
cessing with Python, 2009.

[10] A. Mueller, “Wordcloud for python documentation,” http:
//amueller.github.io/word_cloud/, accessed: 2020-03-17.

[11] C. Stead, “Crypto a to z: Cryptocurrency glossary,”
https://www.finder.com/cryptocurrency-glossary, ac-
cessed: 2020-03-17.

[12] R. Real and J. M. Vargas, “The probabilistic basis
of jaccard’s index of similarity,” Systematic Biology,
vol. 45, no. 3, pp. 380–385, 1996. [Online]. Available:
http://www.jstor.org/stable/2413572

[13] S. Loria, “Textblob: Simplified text processing,” https://
textblob.readthedocs.io/en/dev/, accessed: 2020-03-17.

[14] Wikipedia, “Elbow method (clustering),” https:
//en.wikipedia.org/wiki/Elbow_method_(clustering)#:~:
text=In%20cluster%20analysis%2C%20the%20elbow,
number%20of%20clusters%20to%20use., accessed:
2020-03-17.

[15] T. S.-L. developer team, “sklearn.cluster.kmeans,”
https://scikit-learn.org/stable/modules/generated/sklearn.
cluster.KMeans.html, accessed: 2020-03-18.

[16] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Explor-
ing network structure, dynamics, and function using net-
workx,” in Proceedings of the 7th Python in Science Con-
ference, 2008, pp. 11 – 15.

[17] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An
open source software for exploring and manipulating
networks,” 2009. [Online]. Available: http://www.aaai.org/
ocs/index.php/ICWSM/09/paper/view/154

[18] The Gephi development team, “Gephi tutorial layouts,”
https://gephi.org/tutorials/gephi-tutorial-layouts.pdf, 2011.

[19] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer,
Z. Nikoloski, and D. Wagner, “On modularity clustering,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 20, no. 2, pp. 172–188, 2008.

5

https://mathinsight.org/definition/network
https://mathinsight.org/definition/network
https://www.geeksforgeeks.org/clustering-in-machine-learning/#:~:text=Clustering%20is%20the%20task%20of,data%20points%20in%20other%20groups.
https://www.geeksforgeeks.org/clustering-in-machine-learning/#:~:text=Clustering%20is%20the%20task%20of,data%20points%20in%20other%20groups.
https://www.geeksforgeeks.org/clustering-in-machine-learning/#:~:text=Clustering%20is%20the%20task%20of,data%20points%20in%20other%20groups.
https://www.geeksforgeeks.org/clustering-in-machine-learning/#:~:text=Clustering%20is%20the%20task%20of,data%20points%20in%20other%20groups.
https://developer.twitter.com/en/docs/twitter-api
https://gist.github.com/manuchandel/bc8a6ca4b1527b7594945e5091013905
https://gist.github.com/manuchandel/bc8a6ca4b1527b7594945e5091013905
https://doi.org/10.5281/zenodo.3509134
https://medium.com/swlh/tweets-classification-and-clustering-in-python-b107be1ba7c7
https://medium.com/swlh/tweets-classification-and-clustering-in-python-b107be1ba7c7
http://amueller.github.io/word_cloud/
http://amueller.github.io/word_cloud/
https://www.finder.com/cryptocurrency-glossary
http://www.jstor.org/stable/2413572
https://textblob.readthedocs.io/en/dev/
https://textblob.readthedocs.io/en/dev/
https://en.wikipedia.org/wiki/Elbow_method_(clustering)#:~:text=In%20cluster%20analysis%2C%20the%20elbow,number%20of%20clusters%20to%20use.
https://en.wikipedia.org/wiki/Elbow_method_(clustering)#:~:text=In%20cluster%20analysis%2C%20the%20elbow,number%20of%20clusters%20to%20use.
https://en.wikipedia.org/wiki/Elbow_method_(clustering)#:~:text=In%20cluster%20analysis%2C%20the%20elbow,number%20of%20clusters%20to%20use.
https://en.wikipedia.org/wiki/Elbow_method_(clustering)#:~:text=In%20cluster%20analysis%2C%20the%20elbow,number%20of%20clusters%20to%20use.
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
https://gephi.org/tutorials/gephi-tutorial-layouts.pdf

	Introduction
	Theory
	Experimental Setup
	Results
	Conclusions
	References

